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Task: Spatio-Temporal Action Detection 

Video Input Tube Output
Input

⇥ untrimmed video

Output

⇥ action labels

⇥ temporal boundaries 

⇥ actor trackings
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Current Benchmarks

AVA

⇥ Sparse annotations (1 FPS).

⇥ Atomic actions.

⇥ Without clear temporal boundaries.

UCF101-24 / JHMDB

⇥ Dense annotations (25 FPS).

⇥ Single-person scenes (most videos).

⇥ Coarse-grained actions.



Motivation

Expected Features

⇥ Multi-person scenes.

⇥ Dense annotations (25 FPS).

⇥ Well-defined temporal boundaries.

⇥ Fine-grained and complex actions.



Annotation Process

Action vocabulary generation

⇥ Official documentations for aerobic 

gymnastics.

⇥ Athletes set the rules in an iterative way for 

ball sports.

Data Preparation

⇥ 720P or 1080P professional competitions.

⇥ Different levels, countries and genders.



Annotation Process

Two Stage Action Annotation

⇥ Athletes annotate action label, boundary and the 

first frame box.

⇥ FCOT tracker [1] + Crowd-sourced annotators 

adjust boxes of tracking results at each frame.

Quality Control

⇥ Double check actions and boundaries for each clip.

⇥ Double check boxes in 5 FPS for each instance.

Difficulty Diversity
High 

Quality

[1] Yutao Cui, Cheng Jiang, Limin Wang, and Gangshan Wu. Fully convolutional online tracking. CoRR, abs/2004.07109, 2020. 



Statistics
Compare with other datasets

⇥ More fine-grained actions 
categories.

⇥ More instances and instances 
per clip.

⇥ The largest number of bounding 
boxes.

Long-tailed distribution.

Large variations of action 
instance duration.



Spatio-Temporal Action Detection Results

UCF101-24 / JHMDB methods

⇥ Low performance on MultiSports.

⇥ Largest performance drop occurs on 

frame-level detector ROAD.

AVA methods

⇥ More evident performance gap 

between two methods on MultiSports.

⇥ Actions with intense motion gain large 

improvement.



Challenges
Error Analysis (Video mAP)

⇥ 𝐸! : Repeat Error.

⇥ 𝐸" :  No spatio-temporal interaction with any GT.

⇥ 𝐸# : Ground-truth missing.

⇥ 𝐸$: Only temporal localization error.

⇥ 𝐸% : Only classification error.

⇥ 𝐸& : Only spatial localization error.

⇥ 𝐸%$, 𝐸%&, 𝐸$& , 𝐸%$&:  Contain many kinds of error.



Challenges
SlowFast

⇥ Make fewer false positive predictions than 

MOC but still miss many hard examples.

⇥ Classification is hard for SlowFast.

MOC 

⇥ Classification is the biggest problem for MOC.

⇥ Temporal localization is more difficult than 

spatial localization.

Classification Temporal 
localization

Spatial 
localization> >



Analysis
The importance of temporal 
information.

Trimmed vs. untrimmed settings.

Which action categories are challenging?

⇥ Context modeling, e.g. basketball 2-point shot vs. 3-

point shot.

⇥ Reasoning, e.g. volleyball protect  vs. defend.

⇥ Long temporal modeling, e.g. football long ball vs. pass.



Potential Applications

AI Referee
Technical 
Report

Game

Commentary
Supervision



Conclusion
Introduce the MultiSports dataset.

⇥ Raise new challenges for recognizing fine-grained action classes.

⇥ Require accurate localization of action boundaries in multiple-person situations.

⇥ High quality video data and dense annotations.

⇥ High diversity in competition levels, countries and genders.

Investigate several action detection baseline methods on MultiSports.

Provide detailed error analysis and ablation studies.
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MulitSports Track

⇥ Validation Phase: 2021.06.01-2021.08.31

⇥ Testing Phase: 2021.09.01-2021.09.12



Evaluation

Video mAP

⇥ 3D IoU: temporal IoU of two tracks × average of IoU between the overlapping frames.

⇥ Threshold: 0.2, 0.5, 0.05:0.45, 0.5:0.95, 0.1:0.9

⇥ Rank according to the V@0.1:0.9

Frame mAP

⇥ Threshold: 0.5



Statistics

Valid Participants: 187

Valid Teams: 7 (Val Phase) + 10 (Test Phase)



Results
Valid Submission: 34 (Val Phase) + 42 (Test Phase)



Simple Examples
⇥ Background provides much information. Motion pattern is simple.

G
T

𝐏𝐫
𝐞𝐝

G
T

𝐏𝐫
𝐞𝐝

⇥ No need for modeling interactions between person, objects and scenes. Motion pattern is simple.



Hard Examples
⇥ Missed detection due to occlusion. Inaccurate action boundaries.

G
T

𝑬 𝑴
,𝑬

𝑻
G
T

𝑬 𝑪
,𝑬

𝑻

⇥ Failing to model the interactions between person, objects and scenes.



Hard Examples
G
T

𝑬 𝑪
&𝑻

G
T

𝑬 𝑵
,𝑬

𝑻,
𝑬 𝑴

⇥ Fine-grained human motion pattern.

⇥ Failing to model the interactions between person, objects and scenes. Inaccurate temporal boundary.



𝟏!" Place Winners



𝟐#$ Place Winner



𝟑𝒓𝒅 Place Winner



Thanks !

Homepage: https://deeperaction.github.io/multisports/ Github: https://github.com/MCG-NJU/MultiSports/


