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Abstract

This article introduces the solution of the Midea AIIC
team for the multisports challenge on spatio- temporal ac-
tion detection track of the 2021 deeperaction competition.
In this work, we tried to handle three main challenges in
MultiSports dataset: the complicated multi-person scene,
inaccurate boundary segmentation of tubes and some ac-
tion is related to environmental information. Thus, two
main innovations are presented in our work. Fristly, we im-
prove MOC-Detector by adding a new background branch
which provide a further information to distinguish back-
ground and actions. Secondly, we propose an adjust tube
postprocess method, which improves tubelet linking phase,
including dealing with blurred time boundaries and using
environment information like ball object to reclass similar
actions. We achieved 19.13 video-mAP@0.10 : 0.90 on test
dataset and rank the second place in 2021 ICCV DeeperAc-
tion track 2.

1. Introduction

As a challenging task in video understanding, spatio-
temporal action detection not only needs to extract the tem-
poral information of the action in video, but also needs to re-
turn the specific target location with a box where the action
occurs. This enables it to deal with more complex visual
tasks such as video surveillance [11] [5], video information
search, sports event analysis and other scenarios where spe-
cific action needs to be analyzed, but at the same time, si-
multaneously extracting time and space information greatly
increases the difficulty task processing.

On the DeeperAction track 2, MultiSports [8] is a new
dataset for spatio-temporal action detection. It is a densely
annotated high-level actions dataset like J-HMDB [6] and

UCF101-24 [18], which provides frame-wise action labels
of the video.

The comparison between JHMDN, UCF101 24 and
MultiSports is shown in Fig. 1. In comparison, J-HMDB
and UCF101-24 are the classical benchmarks in spatio-
temporal action detection, and have made a huge contri-
bution to the development of the field, but there are some
problems on them. One is that the video has a low reso-
lution limited by early technology, and by clipping some
videos are not very clear. What’s more, each video has
only an action category, and doesn’t contain background
frame while the action usually occupies the main part of the
video, which sometimes is different from the actual, reduc-
ing their practical application value. Compared with them,
MultiSports is a larger densely annotated high-level actions
dataset with 720p high resolution. It focuses on the detec-
tion of sports actions, giving a clear action boundary both in
time and space. Each video has multiple action categories
and many people behave at the same time, but only the spec-
ified actions should be detected. The smaller target, and the
plenty of similar multiple concurrent action instances bring
more challenges in spatio-temporal action detection.

On task processing, in the past, spatio-temporal action
detection mainly take a frame of videos as the input, and
output the detection result of these static images and then
merge results to action tubes [3][12][15][20][21][16]. This
has achieved some effects for actions that have great corre-
lation with certain human posture and scenes, but for other
complicated actions like similar sport actions, it is limited
due to the lack of timing dynamic information. In recent
years, the number of excellent models proposed for spatio-
temporal detection has gradually increased. They use a
sequence of frames as input to capture dynamic informa-
tion, thereby greatly improving the effect of action detec-
tion [14][7][4][22][24][17].

Among them, MOC-Detector [9] is the state of art on JH-



Figure 1. The comparison between JHMDN (row 1), UCF101 24 (row 2) and MultiSports (row 3) data types

MDN and UCF101-24. Most of the tubelet detection meth-
ods like ACT-Detecor [7] and SlowFast [2] is mainly based
on the classic target detection network such as SSD [10]
and Faster RCNN [13]. However, this kind of method relies
on manual anchors, which makes network inconvenient to
design, and the calculation is very large. When further to
process videos, the computation increase more. In compar-
ison, MOC-Detector inherits the concept of CenterNet [1],
elegantly returns to the target box of the object in a free-
anchor method, and has a great reduction in computational
cost. The most important is that, MOC-Detector designs
a Movement Branch to predict the trajectory of the human
movement. This method clearly return the center position
of the human short-term movement, which is equivalent to
link k frames predicted target boxes. It replaces the com-
plex task in anchor-based detection method that extends the
predicted target box of key frames to other frames to get a
3D ROI features and then use the ROI features to predict the
action category, proposing an excellent idea for simplifying
the task of spatio-temporal action detection. While simpli-
fying the task processing, MOC-Detector still maintains an
excellent accuracy. This is the main reason why we choose
MOC-Detector as the baseline.

By looking into the evaluation results of MOC-Detector,
we found that: 1) accurate target detection from the back-
ground is crucial to final results; 2) inaccurate boundry seg-
mentation of tubes affects the TIOU betweenthe predicted
tubes and the ground truth severely. Thus, two main inno-
vations are proposed in our work.

Firstly, based on MOC-Detector, a new branch called
background branch is added to predict the confidence of

actions. This modification (MOC-B-Detector) help to im-
prove the overall performance, including accuracy and con-
verge speed. Besides, it can help to screen extra detection
tubes.

Secondly, a new post process called Adjust Post Process
(ATP) is proposed to handle the blurred time boundary of
tubes. This post process improves the video mAP greatly.

In addition, we use environment information like ball,
racket to build the relation between action and sport. By
this way, the false classifcation rate is reduced.

2. Method

Our framework is mainly developed from MOC-
Detector. MOC-Detector is an excellent detector for
processing spatio-temporal action detection.The input of
MOC-Detector is consecutive k frames. Then, the model
uses a 2D shared weights backbone to extract features of
k-frame. Next, the k-frame feature maps are sent to three
branches called center branch, movemet branch and box
branch. The center branch outputs center points of in-
stances and categories of actions of key frames. The move-
ment brach aims at analyzing the movement between the
key frame and other frames, and estimate the trajectories
of moving points.The box branch is designed to regress the
size of bounding box in each frame. After that, the outputs
from these three braches generate predicted tubelet results.
With a matching strategy, these tubelets are further linked
to yield video-level tubes.



Figure 2. MOC-B framework.

2.1. Framework

Although MOC-Detector achieves the state-of-the-art re-
sults on J-HMDB and UCF101-24 datasets. In MultiSports
challenge, the situation is different. MultiSports dataset has
a complicated multi-person scene. In the video, behaviors
from many people are often similar, especially for football
players. However, only specific actions need to be detected
and the others belong to background. In addition, top-N
results from center branch are obatained to process tubelet
linking, but the value N usually larger than the number of
action instances. This will cause a large amount of redun-
dant results. Thus, in our framework, we try to add an
another branch to distinguish the background actions and
ground truth actions.

Inspired by auxiliary classifiers from GoogLeNet [19]
and [23], MOC-B adds another scale feature map as the in-
put of new branch on the basis of MOC-Detector, and we
call it background branch. This branch is only used to pre-
dict the confidence of actions. The framework is shown in
Fig. 2.

We concatenate 16× down-sampling k frames feature
maps of the backbone network to predict action confidence
via two convolution layers. Compared with using final fea-
ture maps, this makes a negligible calculation on the origi-
nal model. Secondly, the branch establishes a shortcut be-
tween the relatively middle layer and loss calculation. The
loss can directly affect the middle layer, which is more con-
ducive to the gradient backpropagation of the shallow net-
work layers, so as to accelerate the loss reduction speed.
And 16× down-sampling feature maps own smaller size. In
order to predict correctly, the branch leads less information

loss and more information is tend to be saved to improve
the overall performance.

In addtition, compared to detect multiple action cate-
gories at the same time, it is easier to just detect the possi-
bility of actions and has a higher recall rate and accuracy to
distinguish background and actions. In inference, the confi-
dence from background branch can work together with the
heatmap from center branch to improve detection quality in
tubelet linking phase.

The training objective of the MOC-B framework is ex-
pressed as

l = lc + alm + blb + clbg (1)

where lc stands the center branch loss, it is a variant of focal
loss. lm is the movement branch loss, and it is a l1 loss
function. lb represents the box branch loss, and it is also
a l1 loss function. The details of these three loss functions
can be found in the work [9]. We add a brackground branch
loss function lbg here.

The lbg function is similar to center branch loss lc. The
diffenece is that the center branch loss has a category pa-
rameter where brackground branch only considers back-
ground or actions. So, our the lbg function is expressed as a
focal loss as following,

lbg = − 1

n

∑
x,y

lbgxy, (2)

where
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(3)



Figure 3. Example of that partly actions in consecutive 7 frames contribute their score to frames without action. The green box is ground
truth and the yellow is predicted.

The ground truth heatmap Hxy follows a binary distribu-
tion. For the ith action instance, consider a point (xi, yi),
if point (xi, yi) is in the bound box of ground truth label,
Hxy = 1 no matter what kind of action categories. If
(xi, yi) is not in the bound box of ground truth, Hxy is set
as 0, which means it is a background. The Ĥxy is predicted
result at point (x, y), n is the number of ground truth in-
stances and α is hyperparameter of the focal loss.

2.2. An Adjust Tube Post Process Method

Tubelet linking algorithm from ACT-Detector is used to
merge clip-level tubes into video-level tubes. In multisports
dataset, the situation is more complicated. Thus, we design
a series of post process methods to improve the tubelet link-
ing algorithm. These post process methods are called adjust
tube post process (ATP) algorithm. And we will introduce
some details of the ATP algorithm.

Firstly, we’d like to deal with the blurred time bound-
ary of tubelets. We find that the predicted tubes are al-
ways longer than the ground truth. There are three rea-
sons for this phenomena. The first reason is that the length
of tubes is larger than the parameter of k. A large k al-
ways means more available temporal information. How-
ever, some ground truth action tubes are shorted than k. The
second reason is that the clip-level detector with k frames as
input is usually used to generated the heatmap of key frame,
but the result works on all k frames. On validation, each
frame is needed to generate a tubelet, but not every frame
has actions. If consecutive k frames own partly actions, it
will contribute action score to other frames without actions,
extending the time on both ends, as showed in Fig. 3.

Another situation is that when some actions occur, it is
difficult to have a perfect boundary between the start time
and the end time. Action is a process and inevitably diffi-
cult to distinguish accurately. The ambiguity will also make
action prediction start faster or end slower than the actual.

In response to this phenomenon, we designed an efficient

method called time boundary cut to deal with this problem.
For predicted action, each frame has a corresponding score.
The score is the average score of the category heatmap of
the tubelet overlap frames when tubelets are linked. It can
be used as an important information to delete frames with-
out action. The action information from the frames with-
out action must be insufficient, and will have a lower score.
Therefore, a threshold can be selected to eliminate them.

For difference in score between easily detected actions
and hard detected actions, in order to improve robustness,
for one tube we calculate the median value of all frames
scores as a dynamic threshold δ and set a weight w to make
the score compare with the median score median (si) mul-
tiply by the weight . For all frame score less than the δ, we
will remove the frames at both ends.

δ = median (si)w, i = 1, 2, · · · , n, (4)

T = Clip (T [si > δ]) , i = 1, 2, · · · , n, (5)

where T and T are tubes before and after time boundary
cut. si is the ith frame action score. Clip{} is the opera-
tion to delete frame on both ends whose score lower than
the threshold δ. Time boundary cut strategy brings a huge
improvement for video-mAP.

More action information from trainval can be used to
improve tublete linking. Based on statistical methods, we
counted the durations from all action category on trainval
dataset to improve predicted result further. Action’s dura-
tion should be reasonable. For example, volleyball spike
cannot last long and lasts up to about 20 frames. Basketball
dribble may be long or short. We can delete actions that are
too long or too short. On the other hand, the predicted ac-
tion duration is greater than or equal to the value of k, but
there are many actions whose duration is less than the value
of k, so we need to separately tailor the time boundaries for
different action categories.



2.3. Environment information

Environment information like ball object can be used to
screen extra actions. MultiSports mainly focuses on the de-
tection of sports events, in which volleyball, basketball and
football are all strongly related to ball object. We used pub-
lic yolov5 trained on coco dataset to detect balls and by in-
troducing ball position, it can be used to filter some false
negative samples.

Meanwhile, Some actions are indistinguishable with
background. For example, in multi-person sports scene, like
football, whether or not action is occurred, football player
are walking and running almost all the time, so their pos-
tures are very similar. The similar human postures lead a
large amount of redundant detection actions , and the ball is
an important information to distinguish them. So we crop
a larger area centered on predicted action boxes to contain
ball object and trained a small classification network to re-
classify the tubes.

2.4. Finetune

In the training stage, we firstly trained the model 20
epochs and then analyzed the results. Some actions such
as basketball dribble steal, have a very high miss rate. The
main reasons for this phenomenon can be explained from
two aspects. On the one hand, the amount of these actions
type samples is not enough, which leads a poor predictive
ability on val or test dataset. On the other hand, some ac-
tion types are too complicated to detect. They have very
different tubelets in different situations. The model can’t
correctly predict them or can’t distinguish them from the
other actions.

In the final analysis, the main reason is that the distribu-
tion of actions number of MultiSports dataset is unbalanced.
So we need to increase the numbers of training times for
some data. For actions with higher miss rate, we train it
more times each epoch if one frame has actions with high
miss rate. The higher miss rate, the more repetitions.

tm = floor(max(mi)//10) (6)

where tm is the repeating times of training the mth frame.
missi is the miss rate of the ith category. // represents
divisible. floor () represents the downward integration.

3. Experiment
3.1. Dataset

We perform experiments on MultiSports dataset [15].
MultiSports is a high quality dataset for spatio-temporal ac-
tion detection. It mainly focuses on the detection of sport
actions from four sports event, including aerobic gymnas-
tics, volleyball, football and basketball, which totally con-
tains 66 sport action categories. For each action, the time

boundary and target box are labeled clearly. The train
dataset has 1574 videos and 18422 instances, and the val
dataset has 555 videos and 6577 instances.

3.2. Implementation Details

In the training stage, we set a = 1 and b = 0.1 which
follows the work [18] in Equ. 1. For the parameter c, we set
it as 1 after some experments. In the Equ. 3, we set α = 2
which is same to the work [9].

The original video resolution is 1280 × 720. we
crop it to each frame and normalize each frame to
320 × 320 for training and validation. We input 11
consecutive frames each time. Then, we trained 20 epochs
first and each epoch selects one scale from five scales
[384× 384, 352× 352, 320× 320, 288× 288, 256× 256]
for training. The initial learning rate is 5e−4, and it drops
10 times after the 6th and 8th epoch. We perform two more
epoch of fine-tuning training after 20 epochs with learning
rate 5e−7. We trained on 8 Tesla P100 and consumed about
4 days.

We use 320× 320 as the input image size with horizon-
tal flip test. And the parameter N is set as 5. All the length
of tube were saved. Then we follow MOC-Detector to link
tubelets and use our proposed ATP method to improve link-
ing results.

AP Extra Cls Miss
MOC-B* 34.69 18.36 15.46 23.93
MOC-B 33.12 25.32 18.58 13.58

Table 1. Error analysis. MOC-B* represents the postprocess select
tubes over 15 frames length. MOC-B represnets saves all tubes.

Video-mAP(%)
@0.10:0.90 @0.2 @0.5 @0.05:0.45 @0.50:0.95

MOC-B* 13.91 30.63 10.81 26.74 2.79

MOC-B 13.22 29.33 10.11 25.49 2.61

MOC-B*+ATP 20.12 37.24 22.04 34.31 7.23

MOC-B+ATP 20.22 37.51 22.05 34.52 7.24

Table 2. The comparison of video-mAP result on MOC-B* and
MOC-B.

3.3. Ablation Studies

In the first experiment, we’d like to introduce the differ-
ence about miss rate in tubelet linking phase. In the original
tubelet linking algorithm, it only selects the tublets whose
length over 15 frames. Although it can improve the AP
socre by reducing redundant results. It also brings too high
miss rate, as shown in table 1.

In our method, we choose to save all tubes, and use the
ATP method to post process these redundant results and re-
duce the miss rate. Although video-mAP from all tubes is



Model Frame-mAP Video-mAP(%)
@0.5(%) @0.10:0.90 @0.2 @0.5 @0.05:0.45 @0.50:0.95

BS 25.74 11.82 26.08 8.79 22.87 2.28
+MS 26.45 12.37 27.42 9.34 23.82 2.50
+BB 27.06 13.16 28.87 10.11 25.31 2.61
+K11 27.14 13.22 29.33 10.36 25.49 2.63
+FT 27.56 13.30 29.02 10.41 25.57 2.72

+ATP 27.56 20.18 36.92 22.32 34.13 7.39
+EN 27.56 20.32 37.23 22.37 34.23 7.41

Table 3. Ablation experimental results on val dataset. BS is the baseline MOC-detector with parameters k = 7, N = 5 and save all tubes.
MS represents use multi-scale images as the training input. BB represents MOC-B framework which adds the background branch. K11
means k = 11. FT means fine-tune two epochs in the last. ATP use the proposed adjust post process method. EN is using environment
information in post process.

lower than the tubes with a length greater than or equal to
15 frames for more redundant results, it has lower miss rate.
It means a higher potential in improving video-mAP after
time boundary cut and statistics-based post-process method,
and the comparison of results before and after ATP method
is showed in table 2.

In the second experiment, we mainly evluate peformance
of each module, as shown in table 3. In this table, BS rep-
resents baseline MOC-detector. And the parameters are set
as k = 7, N = 5 and save all tubes. The frame-mAP@0.5
is 25.74%, and the video-mAP@0.10 : 0.90 is 11.82%.

MS represents using multi-scale images as the train-
ing input. The original input resolution is 320 × 320.
The MS method select one scale from five scales
[384× 384, 352× 352, 320× 320, 288× 288, 256× 256]
for training in epoch . The frame-mAP@0.5 increases
0.71%, and the video-mAP@0.10 : 0.90 increases 0.55%.

BB represents MOC-B framework which adds the pro-
posed background branch. It improves the overall perfo-
mance from two aspects. On one hand, it converges faster
than original MOC detector. On the other hand, the final
converged loss value is lower than that of the original MOC
detector. With background branch, the frame-mAP@0.5 im-
proves 0.61%, and the video-mAP@0.10 : 0.90 improves
0.79%.

We select a large parameter k in the training stage.
Larger k means that richer temporal information are used.
The good thing is that it can increase recall rate, and the
bad point is it also bring redundant results and long tublets.
So we can see, when we increase k from 7 to 11, the
frame-mAP@0.5 and video-mAP@0.10 : 0.90 increase a
little. However, it help reduce miss rate. Using the follow-
ing ATP module, they two together can improve the video-
mAP@0.10 : 0.90 index a lot.

The FT module is to deal with some action categories
which has a low accuracy because of small number of
training samples. These actions are very hard to detect.
We perform two more epoches of fine-tuning training af-

ter 20 epochs. In these two epochs, these frames with ac-
tions without enough number of samples would be trained
more times. The fine-tuned two epoch with learning rate
5e−7. And FT module earns 0.42% of frame-mAP@0.5 and
0.08% of video-mAP@0.10 : 0.90.

The ATP is our proposed adjust post process method
to improve action time boundary, and it affect the video-
mAP@0.10 : 0.90 index a lot. For the reason that predicted
action duration is usually longer than the actual. The TIOU
value between predicted tubes and ground truth tubes is rel-
atively low, leading a bad overall performance, so we opti-
mized the accuracy of the boundary and cut the unreason-
able actions with ATP method. From the table 3, we can
see, the proposed ATP method make a significant improve-
ment. The video-mAP@0.10 : 0.90 raised from 13.30% to
20.18%.

At last, environmental information is also important in
distinguishing different actions and background. In our
method, we only use ball object information to help re-
classify tubes with a classification network. And the video-
mAP@0.10 : 0.90 raised from 20.18% to 20.38%. In fact,
there is various environmental information which be used
to improve the performance. For example, “football trap”
and “football steal” are almost the same actions. The way
to distinguish them is to compare cloth colours between the
two people who pass and trap the ball.

Frame-mAP Video-mAP(%)
@0.5(%) @0.10:0.90 @0.2 @0.5 @0.05:0.45 @0.50:0.95

12.9872 19.13 35.05 20.83 32.48 7.11

Table 4. The final result on testing dataset.

The result on testing dataset is shown in table 4. We
achieve 19.13 video-mAP@0.10 : 0.90 on test dataset and
rank the second place in 2021 ICCV DeeperAction track 2.



4. Conclusion

In this work, we provide a solution for Multisports
datasets. Firslty, we added a new backgroud branch for
MOC-Detector and use the multi-scale images as the inputs,
which is appropriate to deal with the complicated multi-
person scene of Multisports datasets. Secondly, we pro-
posed an ATP method to deal with the blurred time bound-
ary of tubelets in the tubelet linking phase, and make use
of environmental information to improve the classification
results. In the future, we’ll spend more effort to merge the
post-process into the model and make it a conceptually sim-
ple framework.
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