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Abstract

This technical report introduces our solution to Multi-
Sports track on spatiotemporal action detection, DeeperAc-
tion Challenge at ICCV 2021. Our solution utilizes a cross
attention mechanism to explicitly model relations between
person and context for action detection. We describe solu-
tion details for the new MultiSports dataset, together with
some experimental results. We finally achieve 48.68 frame
mAP and 24.2 video mAP@0.1:0.9 on the test set of Mul-
tiSports and obtain the 1st place of the MultiSports track,
which outperforms other entries by a large margin.

1. Introduction

Spatio-temporal action detection in untrimmed videos
aims to detect and recognize human actions in space and
time, which is of great significance and has attracted many
efforts in recent years [3, 2, 7, 9, 14, 11, 8]. Current spatio-
temporal action detection benchmarks can be mainly di-
vided into two categories: 1) Densely annotated actions
such as UCF101-24 [13] and J-HMDB [5]; 2) Sparsely an-
notated actions such as DALY [16] and AVA [3]. Sparsely
annotated datasets fail to provide clear temporal action
boundaries, which might be not enough to model the actions
with rapid movement. UCF101-24 [13] and J-HMDB [5]
provide densely annotations, however, their video clips typ-
ically have only one single person doing some semantically
simple and temporally repeated actions, which means only
one person in one video clip have one action class. In ad-
dition, due to coarse-grained action categories and charac-
teristic visual scenes, it makes it much easier to get cues for
predicting actions from scenes, which weakens the impor-
tance of fine-grained motion information of human actions.

MultiSports [8] provides a large-scale spatio-temporal
action detection dataset for multiple people in sports, with
frame-by-frame annotations of multi-person multi-class ac-
tions. Many methods that perform well on UCF101-24 [13]
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and J-HMDB [5] perform poorly on MultiSports [8], since
it is much more challenging in: 1) Multiple people per-
form different and fine-grained actions concurrently in the
same scene; 2) The backgrounds are far less characteris-
tic and action recognition can not get much help from the
background information; 3) There are more person-object-
scene interactions in sports actions compared with atomic
actions. Therefore, detecting these fine-grained actions
requires complex spatio-temporal context modeling with
human pose motions, long-term semantics, person-object-
scene interactions, and reasoning [8].

Attention mechanisms have been demonstrated to be ef-
fective for modeling relations between person and context.
In ACAR [11] network, each person feature is repeatedly
concatenated to all spatial locations of the global context
feature. Then the concatenated feature map is encoded by
several convolutional layers to form actor-context [11] fea-
ture. Finally, self-attention layers are applied to learn high-
order relation reasoning. However, human actions of inter-
est (action categories of the dataset) account for a very small
proportion of all possible human actions in the untrimmed
video scene. The global context feature represents rich in-
formation of the input video while the feature of an in-
terested action is down-sampled and transformed from the
context feature. These two types of features are of capacity
inequality to representation. We should utilize them more
carefully. Moreover, concatenating the person feature to all
spatial locations of the context feature may bring ambigu-
ity for learning accurate spatial relations and it is compu-
tationally expensive. Based on the above observations, we
introduce a cross attention transformer encoder for person-
context relations modeling in videos. In our instantiation of
cross attention mechanism, the person feature keeps attend-
ing to the context feature and gets relation information of
different levels (direct or indirect) while the context feature
preserves rich representations for various actions.

Inspired by previous works, we adopt SlowFast Det [2]
as our baseline. Firstly, an off-the-shelf person detector
is employed to generate person bounding boxes in videos.
Then, We adopt SlowFast [2] as the video backbone to ex-
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Figure 1. Framework of our approach for spatio-temporal action detection. The frame is cropped for more clear illustration.

tract visual features, and the feature maps of each person are
obtained via ROI-Align [4]. Finally, the proposed cross at-
tention transformer head is applied for person-context mod-
eling and human action prediction. Furthermore, we have
attempted to build a boundary prediction module to obtain
boundary-aware tube features. We leave it as future work
since we believe that clear temporal boundaries in Multi-
Sports are significant information for improving the perfor-
mance of spatio-temporal action detection, especially the
video-mAP metric.

2. Method
In this section, we present our approach for spatio-

temporal action detection on MultiSports. Firstly, we
introduce the overall framework of our method for this
task. Then a cross attention module based on transformer
is present for modeling relations between person and its
spatio-temporal context. Finally, we discuss the learning
strategy for the long-tailed category distribution in Multi-
Sports dataset and the approach for model ensemble.

2.1. Over Framework

Based on some previous works[2, 11, 17] for spatio-
temporal action detection task, we design the whole
pipeline as shown in Figure 1. The framework is designed
to detect all persons in an input video clip and predict their
action classes. Specifically, a video is firstly sampled with
a specified frame interval into an input video clip. The cen-
ter frame of the clip is extracted and fed into a 2D detector
to generate bounding boxes of people. In the meantime, a
video backbone network extracts spatio-temporal features
from the video clip. We perform average pooling along the

temporal dimension on the video feature, which results in a
feature map V ∈ RC×H×W , where C, H , and W denotes
channel height and width respectively. Then N person fea-
tures are extracted by applying 7 × 7 RoI-Align on feature
map V and further pooled by 7 × 7 max pooling, produc-
ing N person features, A1, A2, ..., AN ∈ RC . Each pooled
person feature along with the global feature V is viewed
as a person-context pair and fed into cross attention trans-
former encoder for relation modeling. The transformer en-
coder outputs the final representation of a person. Lastly,
a linear classifier takes the person’s representation as input
and outputs action predictions.

2.2. Person-Context Cross-Attention Modeling

Person-context features are firstly transferred into se-
quential tokens as the input of transformer encoder. In the
first layer of cross attention transformer, the query input is
a person feature and the key/value input is the person’s con-
text feature. The scaled dot-product operation outputs an
attention scores matrix and the projected context feature is
multiplied by the matrix. The multiplied feature serves as
the inherent dependency for person-context relations and is
further added to the person feature through a shortcut con-
nection. This enhanced feature is further taken as query in-
put in the subsequent transformer layers, and key/value in-
put keeps the same as the first layer, which indicates that the
context feature will not be transformed along with the per-
son feature layer-by-layer. We argue that indirect relations
can be retrieved by person-context interactions of multiple
layers.

For computational efficiency consideration and the ob-
servation that the fine-grained behavior of a person usually
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Figure 2. Person-Context Cross-Attention.

relates to surroundings near the person, we use an extended
box and RoI-Align to extract spatio-temporal context of the
person. Specifically, we increase the person box scale by a
factor of 2 times. The extended box has the same center as
the original but is larger in height and width. We use the
extended boxes to perform h×w RoI-Align on feature map
V , which results in N features C1, C2, ..., CN ∈ RC×h×w

describing spatio-temporal context of persons. In our im-
plementation, h× w is set to 9× 9.

In the first transformer layer, an person feature Ai ∈ RC

is taken as query input tokens and the corresponding con-
text feature Ci ∈ RC×h×w is flatten and taken as key/value
input tokens of h × w length. Formally, cross-attention
transformer for person Ai and context Ci computes feed-
forwardly for j = 1, ..., D layers,

Q0 = Ai, (1)

Xj = LN(MultiHead(Qj−1, Ci, Ci) +Qj−1), (2)

Qj = LN(FFN(Xj) +Xj), (3)

We omit parameters notations for simplicity. LN denotes
layer normalization[1]. FFN is feed-forward sublayer and
MultiHead[15] means multi-head scaled dot-product atten-
tion. In our implementation, the transformer head is of 3
cross attention layers with 8 heads in each layer, and the
projection dimension is 1024.

2.3. Long-tailed Learning

The number of instances in each action category ranges
from 3 to 3,514, which reflects obvious long-tailed category
distribution. The classes with fewer instances pose great

challenges for deep learning based models on how to deal
with the class imbalance problem.

We consider the decoupling representation learning strat-
egy [6] to obtain the model that is capable of recognizing
all classes well. Specifically, the training process is divided
into two phases. In the first phase, we follow the normal
training paradigm with standard randomly sampled data. In
the second phase, we freeze all parameters of the model ex-
cept the final classifier and retrain the classifier with class-
balanced sampling. For class-balanced sampling, each class
has an equal probability of being selected. Such a strategy
helps to further improve performance, especially on some
classes with a small number of samples.

3. Experiment

MultiSports v1.0 contains 18,422 training instances from
1,574 videos and 6,577 validation instances from 555
videos. And there are 1,071 videos in the test set. Fol-
lowing the guidelines of the challenge, we evaluate on 60
action classes, and the performance metrics are frame-mAP
and video-mAP. For frame-mAP, the IoU threshold is 0.5.
For video-mAP, the 3D IoU threshold is 0.5 for 0.2 and 0.5
and 0.1:0.9.

3.1. Implementation Details

Person Detector. We apply Faster R-CNN [12] frame-
work with ResNeXt-101-FPN backbone from maskrcnn-
benchmark[10] for person detection. It is firstly pre-trained
on ImageNet and the COCO Person keypoint images. We
further fine-tuned the model on train set of MultiSports for
higher detection precision.
Backbone. A SlowFast-R101 backbone network with T ×
τ = 8 × 8 and α = 4 is used to extract video features.
It is firstly pre-trained on Kinetics-600 dataset. The spatial
stride in stage res5 is set to 1 and a dilation of 2 is used for
the stage’s filters. This increases the spatial resolution of
res5 by 2 times.
Training. We use per-class binary cross entropy loss as
the training loss function. We train models with two spatial
scales 256 × 455, 360 × 640 respectively in an end-to-end
fashion using SGD with a mini-batch size 32 for 256× 455
scale and mini-batch size 24 for 360×640 scale. The initial
learning rate of SGD optimizer is 0.1. We also use weight
decay 1e-4 and Nesterov momentum of 0.9. Linear warm-
up is adopted during the first 3 epochs. We decrease the
learning rate by a factor of 10 at epoch 5, 8, and 10. Model
optimization process stops at 12th epoch for training only
on train set and stops at 15th epoch for train/val set.
Inference. We use person detections with confidence ≥
0.6. For action tube generation, we use the same link al-
gorithm as MOC [9].



head testing decoupled detector∗ val set test set
scales training F@0.5 V@0.2 V@0.5 V@0.1:0.9 F@0.5 V@0.1:0.9

Linear 256× 455 × det-1 29.03 28.06 8.39 12.26 - -
PCCA 256× 455 × det-1 39.48 38.01 17.82 19.02 - -
PCCA 256× 455 X det-1 42.21 41.00 19.95 20.89 - 20.70
PCCA 360× 640 × det-1 41.60 41.14 19.15 20.56 - -
PCCA ensemble X det-3 - - - - 48.68 24.2

Table 1. Main results on MultiSports. F@0.5 denotes frame mAP@0.5. V@0.2 and V@0.5 denote video mAP@0.2 and video mAP@0.5
respecitively. And V@0.1:0.9 is the average of V@0.1 to V@0.9 with 0.1 gap. PCCA refers to Person-Context Cross-Attention. “*”
indicates different detectors in Table 3.2

detector AP@0.5 AR@100 F@0.5 V@0.1:0.9
official [8] - 96.13 42.05 20.88

det-1 78.00 94.36 39.48 19.02
det-2 83.16 94.68 41.60 20.56
det-3 86.53 93.83 43.24 22.40

Table 2. Influence of different person detectors on MultiSports val-
idation set. AP@0.5 denotes average precision of person detection
with IoU threshold 0.5, and AR@100 average recall with top 100
detections each frame. F@0.5 and V@0.1:0.9 reported by test-
ing on a same action model with different person boxes. The ac-
tion model is of SlowFast R101 8× 8 with PCCA head and scale
256× 455.

3.2. Main Results

Table 3.2 shows our main results on MultiSports. The
default backbone instantiation is SlowFast R101 8x8. The
baseline, linear classifier head, only gives 29.03 frame mAP
and 12.26 V@0.1:09. Switching to our Person-Context
Cross-Attention (PCCA) head brings significant boosts on
frame mAP and video mAP. Using the same spatial scare
256 × 455, PCCA head gives a total boost of 10.45 frame
mAP and a boost of 6.76 video AP@0.1:0.9. This high-
lights the effectiveness of modeling person-context rela-
tions using cross attention mechanism. For final submis-
sion, models are trained on both training and validation
data, and tested with 2 scales and horizontal flips. We
ensemble these models’ results by average voting and get
48.68 frame mAP and 24.2 video AP@0.1:0.9 reported
from the test server.

3.3. Ablation Studies

Different Scales. We investigate the effect of different
scales. Two types of scales 256 × 455, 360 × 640 are ap-
plied for training and testing on SlowFast R101 8x8 with
PCCA head. Table 3.2 shows that increasing spatial resolu-
tion from 256× 455 to 360× 640 can bring extra improve-
ment in performance (+mAP 2.12, +V@0.1:0.9 1.54).
Different Detectors. We also investigate the influence of
person detection. We compare person bounding boxes de-
tected by our detector with the boxes provided by Multi-

classes diff. / F@0.5
top-20 +1.76

bottom-20 +3.09
all +2.73

Table 3. Influence of decoupled training on MultiSports validation
set. Classes are ranked by their numbers of labeled samples, and
the averaged differences of top-20, bottom-20, and all classes are
listed.

Sports repo [8]. Table 3.2 shows the results on validation
set. We select 3 models to detect persons. These mod-
els differ in training hyper-parameters (e.g. learning rate,
batch size, stopping iterations). Note that we evaluate only
on frames having action tube annotations (a.k.a. frames
of trimmed videos) to get results of AP@0.5 while we re-
port F@0.5 and V@0.1:0.9 on untrimmed videos. These
settings make the results of AP@0.5 more sensitive to de-
tector’s performance. Because most frames of untrimmed
videos are not annotated with boxes and detections of these
frames would be treated as false positives. The results sug-
gest that we should select person detections with higher AP
when AR is already high. Higher AR detections may recall
more action instances when the action classifier is strong
enough to filter more false proposals.
Influence of decoupled learning. We compare the perfor-
mance of all classes before and after decoupled learning.
Based on the number of instances, we sorted the action cat-
egories in descending order and counted the difference in
frame mAP for top-20 and bottom-20 classes. As shown
in Table 3.3, The performance of all classes is improved by
2.73 in frame mAP, while a larger improvement is seen on
the bottom-20 classes. The results demonstrate that decou-
pled learning is effective for further improving the whole
performance, especially on some of the small classes.
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