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Abstract

This paper presents an overview of our solution used
in the submission to ICCV DeeperAction Challenge 2021
Track 1 (temporal action localization). Temporal action lo-
calization requires to precisely locate the temporal bound-
aries of action instances and accurately classify the ac-
tion instances into specific categories. The performance
of temporal action localization depends on feature extrac-
tion, proposal generation and video classification. For the
feature extraction, we analyze the impact of different video
features on the quality of generated proposals. In order to
improve the quality of proposals, we use the attention mech-
anism, graph convolution, and dilate convolution to deform
the receptive field. At the same time, NMS and refining mod-
ule cascades were applied to TCAnet to further refine the
proposal. Finally, we ensemble different classifiers to im-
prove the accuracy of video classification effectively. With
these methods, we achieve Rank 1 in this competition.

1. Introduction

With the flourish of Streaming Media, the number of
videos increases rapidly, which leads to the increasing de-
mand for video understanding. The temporal action local-
ization (TAL) is one of the main branches of video un-
derstanding, which aims to precisely locate the temporal
boundaries of action instances and accurately classify the
action instances into specific categories. Similar to the ob-
ject detection, TAL can be divided into two categories: one-
stage and two-stage[9]. The generation and classification
of candidate temporal boundaries are performed simultane-
ously in the one-stage method, which can be trained end-
to-end. This method is simple in the training process, but
slightly inferior in accuracy[1, 10]. The two-stage method
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Video type Number Proportion
one-label 11259 89.26%

multi-label 1355 10.74%

Table 1. One-label, multi-label frequency statistics. Frequency
statistics of different labels on training and validation set.

Figure 1. Original distribution VS. resample distribution. The
blue bar indicates the distribution of original number of different
categories. The red bar indicates the distribution of the number of
unbalanced video clips after resampling.

first generates candidate boundaries and then performs ac-
tion classification on each proposal, effectively improving
the accuracy of TAL, but it will inevitably bring a speed
reduction[5, 16, 18]. In this competition, we use a two-stage
method to explore the best performance of the FineAction.

2. Dataset

FineAction[11] is a fine-grained dataset, which is com-
posed of 8,440 train videos, 4,174 validation videos and
4,118 test videos. It contains 106 categories, covering
Household Activities, Personal Care, Socializing Relaxing
and Sports Exercise. We analyzed the number of labels in



Figure 2. Median proportion and the average length of in-
stances. Light coral bar indicates the median percentage of the
total video duration for a single instance. The purple bar indicates
the average length of a single instance of each category. Each cat-
egory label is defined as a value from 0 to 105.

the training and validation set and observed that the labels
of action instances on the same video are mostly the same,
and the label distribution is shown in Table 1. To reduce the
difficulty of training the video classification network, we re-
defined the label of each video as the category of the most
frequent occurrence.

After redefining the video labels, we visualized the dis-
tribution of 35 categories uniformly selected on the train-
ing set, as shown in Figure 1. We can observe a particular
imbalance in the number of different categories from the
figure. For this reason, we used a resampling strategy to
cut out some sparsely labeled instances from the original
videos to supplement the training dataset. The adjusted dis-
tribution of video labels is shown in the red histogram in
Figure 1. In addition, after excluding the dirty annotations
in the ground truth which end time earlier than the start
time or greater than the total video duration, we analyzed
the average length and the median proportion of different
instances to total duration ratio under 106 categories of in-
dividual videos in the training set. Figure 2 shows the dis-
tribution of the 21 categories of actions sampled at random.
Light coral bars are the median proportion of instances in
the video, and purple bars are the average length of indi-
vidual instances. Finally, we eliminated the extremely short
instances based on the resolution of the instances supported
by the grid. It has been shown that the elimination of this
gap can improve the AR@1 of the proposal.

3. Method

The structure of our proposed method is shown in Figure
3 and consists of feature extraction of video clips, proposal
generation, proposal refinement, and video classification.

Figure 3. The improved base-feature layer and the modi-
fied GCNeXt layer. We used the innovative LGTE module in
TCAnet[13] to encode local and global temporal relationships si-
multaneously. We also followed the semantic graph of the GC-
NeXt module in GTAD[17] and added the dilated convolution to
reconstruct the temporal graph to deform the receptive field and
enhance the aggregation of context information.

Figure 4. The architecture of cascade proposals refinement
module. We followed the Cascade RCNN[2], a productive two-
stage object detection method, to refine the proposal. “S” is the
proposal score, “P” refers to the generated proposal, “Interp” de-
notes feature sampling based on “P” and “H” denotes the feature
processing layer.

3.1. Feature Extraction

The quality of video features can seriously affect the per-
formance of TAL, as our proposed TAL network takes video
features as input. First, we used TSN[15] and SlowOnly[6]
to extract features from the untrimmed videos and com-
pare them to the official I3D feature. Specifically, we
extracted TSN features on three models, including pre-
trained on Kinetics-700 dataset[3], pre-trained on Kinetics-
600 dataset, and pre-trained on Kinetics-400 dataset fine-
tuned on FineAction. The TSN input we used contains only
RGB information, as extracting optical flow images is time-
consuming. We used the first two models to extract fea-
tures before the softmax layer. For the fine-tuned model,
we used only the features before the fully connected layer
with a dimension of 1,024. For the SlowOnly pre-trained
on Kinetics-700, the feature dimensions were chosen to be
consistent with TSN-K700. In addition, we chose the video
swin transformer[12], which currently performs SOTA on



Figure 5. The architecture diagram of our proposed method. The whole architecture contains feature extraction, proposal generation,
proposal refinement and proposal classification. The L in feature extraction denotes the dense proposal grid size, and the len is the
individual temporal clips feature dimension.

the kinetics-600 dataset, as the feature extractor. The fea-
tures selected were those before the fully connected layer
and softmax layer, resulting in a higher mAP of our final
submission. Due to the varying length of the videos in
the FineAction dataset, the above-extracted clip features are
normalized by linear-Interpolation.

3.2. Temporal Proposal Generation

We normalized the length of video features to a fixed
size as the input to the temporal proposal network, and this
network outputs a set of proposals containing the action
scores, as shown in Figure 3. In this competition, we fol-
lowed the dense proposal generation framework BMN[8].
We set the grid size equal to L to generate L×L/2 poten-
tial action clips and supervised training of the BMN to learn
the action scores that fall into the corresponding grid. The
lengths of the detectable actions depend on the size of the
grid, with the shortest detectable length being the duration
of per video divided by L. Given the high proportion of
short actions in the FineAction dataset, the grid length was
fixed at 400×400.

Compared to the original BMN, we have improved the
base-feature layer, which directly processes video features.
Specifically, we first used the innovative LGTE module
in TCAnet[13] as a pre-processing module for video fea-
tures reconstruction to encode video features’ local and
global temporal relationships simultaneously. Secondly,
we followed the semantic graph of the GCNeXt module in

GTAD[17] and added the dilated convolution with dilate=2
and dilate=3 to reconstruct the temporal graph to enhance
the aggregation of context information of adjacent frames
while minimizing the growth of parameters, as shown in
Figure 3.

3.3. Proposal Refinement

The proposal generation network will generate a large
number of action proposals to improve recall. However,
the grid-scale of BMN is fixed, which limits the shortest
resolution at detectable actions, and proposals are inflexi-
ble in predicting start and end boundaries. To alleviate it,
we were inspired by the ideas of Cascade RCNN[2] and
TCAnet, and designed a three-level cascade dense2sparse
network to increase the accuracy of proposals. Specifically,
the modified BMN was used to generate the training and
validation set proposals as the anchors of detection region,
which were combined with the extracted features and fed
into the dense2sparse network for training. The proposal
input to the dense2sparse network sorted by topK in de-
scending order of scores, was reduced the dense-proposal
to sparse-proposal. To reduce the difficulty of the network
training, the length of the original features is fixed to 1,000.
To ensure that the features of each clip is not affected by
the interpolated, we followed the TCAnet by interpolating
the video features with length greater than 1000. To in-
crease the generalization ability of the dense2sparse net-
work, we added the NMS on the proposals to remove pro-



Method SlowFast CSN TSN NeXtVLAD Video-swin-transformer
backbone Res101+50 Res152 Swin-Base Swin-Base Swin3D-Base

head SlowFastHead I3DHead TSNHead NextVLADHead I3DHead
clip len 32 32 1 2 32

frame interval 2 2 1 1 3
num clips 1 1 32 32 1

Table 2. Training details for video classification networks. The “num clips” is the number of clips the whole video will be divided into,
the “clip len” denotes the number of frames selected for clip, and the “frame interval” is defined as the number of frames between each
clip.

num clips Accuracy
3 86.08
4 86.77
5 87.61
6 87.42
7 87.03
8 87.90
9 87.58

10 87.63

Table 3. The Top-1 accuracy of Video-SwinB at different
num clips. The Video-SwinB achieved the highest Top-1 accu-
racy 87.90% when num clips equals 8 in FineAction.

Model Top-1 Top-2 Top-3 Top-5
TSN 81.54 91.46 94.19 96.87

SlowFast (nc=8) 84.92 94.11 96.47 98.63
CSN (nc=8) 85.70 94.39 96.96 98.78

Video-SwinB (nc=5) 87.61 94.90 97.41 98.82
Video-SwinB (nc=8) 87.90 95.23 97.84 99.04

NeXtVLAD 87.21 94.87 97.24 98.70
Ensemble 90.03 96.72 98.43 99.41

Table 4. Comparison between different backbones for video
classification. The nc denotes num clips.We used NeXtVLAD,
CSN and Video-SwinB to ensemble the model.

posals with similar scores and boundaries. Inspired by the
Cascade RCNN, which suggests that the best performance
is achieved by picking samples corresponding to a specific
iou for training, we set the training iou threshold to 0.5 in
h1. We sent the fine-tuned proposals from h1 to h2, and
finally, sent the fine-tuned results from h2 to h3. By setting
different thresholds in different stages and cascading each
other, the accuracy of the proposal prediction is gradually
boosted, as shown in Figure 3.

3.4. Video Classification

After refining the proposals to predict the start and end
boundaries of the action, we need to further cascade the
video classifier to output the action detection results. We

refer to the Section 2 for the analysis of the ratio of single-
video multi-label in the FineAction dataset. We followed
the experience from the ActivityNet competition to gener-
ate classification results based on the single-label and train
the video classification network separately. Specifically, we
used TSN, CSN[14], SlowFast, and video-swin-transformer
as classifiers, respectively. In TSN, we used only RGB im-
ages for training and swin-transformer as the backbone. We
added the NeXtVLAD[7] to the classifier network after the
fully connected layer as well. The configuration and valida-
tion set accuracy of different classifiers can be found in the
experiments in Section 4.

4. Experiments
4.1. Action Recognition

The video classification was trained by the mmaction
framework[4], and four models were explored as classifiers
in the development phase. The specific training details are
shown in Table 2, and the NeXtVLAD is a modified scheme
of the TSN. All backbone were fine-tuned on the FineAc-
tion dataset using the pre-trained weights on the Kinetics.

In Table 2, num clips, clip len, and frame interval
are the configuration parameters for reading untrimmed
videos. The num clips is defined as the number of clips
the whole video will be divided into, clip len is defined as
the number of frames actually selected for each clip, and
frame interval is defined as the number of frames be-
tween each clip. Different configurations have an impact
on the accuracy of the model. In video-swin-transformer
(SwinB), for example, num clips is set to 1 during train-
ing, and TTA (Test Time Augmentation) is performed by
increasing num clips during testing to improve the test
accuracy, which is used to cover the variable duration of
untrimmed videos. Table 3 shows the Top-1 accuracy of
SwinB under different num clips in detail.

The video classification accuracy under different models
is given in Table 4. The NeXtVLAD achieves an accuracy
second only to SwinB and is superior to the original TSN.
Finally, we ensembled the CSN, SwinB, NeXtVLAD, and
SlowFast models with different num clips parameters to
determine the validation dataset accuracy.



Video feat L AR@1 AR@5 AR@10 AR@100 AUC

I3D 100 4.92 10.35 13.38 24.64 19.57
200 4.87 10.40 13.75 27.78 21.28

TSN-K700 200 5.15 11.44 15.10 29.61 23.07
250 5.05 10.90 14.41 28.64 22.04

Slowonly-k700 200 5.09 11.19 14.86 29.25 22.67
TSN-full-2048 200 5.42 12.15 16.08 31.29 24.53

SwinB-k600
200 5.80 12.98 16.94 31.73 25.05
256 5.82 12.90 17.09 32.26 25.32
325 6.21 14.23 18.75 35.00 27.69

SwinB-full-1024

256 6.07 13.97 18.60 33.96 27.28
325 6.21 14.44 19.32 36.84 29.25
400 6.49 15.13 20.30 38.80 30.81
450 6.34 15.20 20.32 38.61 30.67

Table 5. Proposals AUC comparison between different backbones used to extract features. The L denotes the length of video feature.

BMN LGTE GCNeXt Dilate TCAnet NMS Cascade Average-mAP(%) Promotion
X 17.32 -
X X 17.61 +1.67%
X X X 18.21 +3.41%
X X X X 18.63 +2.31%
X X X X X 19.14 +2.74%
X X X X X X 21.19 +10.71%
X X X X X X X 22.05 +4.06%

Table 6. Influence of different modules on the performance of FineAction. We used the BMN network trained with the standardized
video feature length of 400 as the baseline.

4.2. Extracting Features

I3D, TSN, SlowOnly, SwinB were used as feature ex-
tractors. 2048-D of I3D features are directly selected from
the official features. In Table 5, TSN-K700, SlowOnly-
K700 are defined as features extracted before the Softmax
using Kinetics-700 pre-training weights. TSN-full-2048
is defined as the model using Kinetics-400 pre-training
weights, fine-tuned by the classifier adding the NeXtVLAD.
We used the features before the fully connected layer as a
representative of video clips. SwinB-K600 is defined as the
feature extracted before the Softmax using the Kinetics-600
pre-training weights, and SwinB-1024 is represented as the
feature before the fully connected layer after fine-tuning us-
ing the Kinetics-600 weights. It should be noted that the
frame interval δ of each video is 16 for I3D, TSN-K700 and
SlowOnly-K700, 5 for TSN-full-2048, and 8 for SwinB-
K600 and SwinB-full-1024.

In the Table 5, we find that the results obtained with the
TSN-full features are higher than TSN-K700 and the results
of SwinB-full are higher than SwinB-K600 using the same
grid scale. The AUC of the proposal at L400 is higher than
L325 and L450 from the validation results of different tem-
poral scales. Moreover, the feature extracted by the SwinB

model showed a significant improvement compared to the
previous features. We believe that the features within the
temporal clips significantly impact on the quality of pro-
posal generation. We speculate that the operation mecha-
nism of the SwinB is more accurate in describing short clip
features, which is a privilege for the detection of a large
number of short instances in the FineAction.

4.3. Proposal Generation

The proposal generation network was trained with the
standardized video feature length of 400. At the same time,
we employed an AdamW optimizer for 32 epochs using a
step decay learning rate scheduler. A batch size of 8, an
initial learning rate of 0.001, and a weight decay of 0.0001
were used. In the training of the TCAnet, the input video
feature length L was 1000, and the top 128 highest scoring
proposals by the NMS of each video were selected as an
input. We employed an AdamW optimizer for 8 epochs.
An initial learning rate of 0.0004, weight decay of 0.00001,
batch size of 16 were used. All experiments were trained
and tested on the NVIDIA-A40 GPU.

Firstly, We added the LGTE, GCNeXt, and dilate convo-
lution to enhance the features in BMN and then used the



dense proposals generated by BMN to feed the TCAnet.
When training TCAnet, the NMS on dense proposals and
the cascade refinement on sparse proposals were used, re-
spectively. The experimental results are shown in Table 6.
From Table 6, we can find that the use of additional modules
in the baseline both improve performance, with the NMS on
the proposals bringing the largest improvement of 10.71%,
indicating that a large number of generated proposals is du-
plicated and that after the NMS, and the TCAnet can learn
a broader range of features. Cascading different models
also achieved a significant improvement of 4.06% in pro-
posal refinement, which indicates that cascading different
refinement can improve the quality of proposals by training
on samples of specific iou threshold quality. Finally, our
detection result achieves 22.05% on the validation set and
23.35% on the test set in terms of mAP.

5. Conclusion
In this paper, we introduce the method designed for the

FineAction competition, including feature extraction, pro-
posal generation, proposal refinement, and video classifica-
tion. We find that the model using the video clips for action
recognition has a greater performance on proposals than the
model using single frame. Increasing the grid size of BMN
can further improve the recognition accuracy of short ac-
tions in the FineAction. However, with the increase of grid
size, the total number of parameters of the model will in-
crease exponentially, and the model convergence epoch will
move backward as well. Considering the cumbersome na-
ture of this method, we will improve the one-stage TAL
framework to locate and identify the extremely short in-
stances in the future.
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