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Abstract

In developing a practical temporal action localiza-
tion framework, we utilize the Boundary-Matching Net-
work(BMN) to efficiently generate temporal proposals, and
incorporate it with a simple clip-classification model to as-
sign fine-grained label for each proposal. After that, we
thoroughly investigate the feature representation for pro-
posal learning and proposal classification. Our approach
improves over the BMN baseline by an absolute 4% mAP in
the validation set of FineAction and acheives 12.52% mAP
in the final test set.

1. Introduction

Temporal Action Localization is a basic component in
practical video stream analytics applications, which aims to
localize the start time and end time of multiple instance and
recognize their action categories from a long, untrimmed
video with complex background contents. The vision com-
munity has shown an increasing degree of interest in the
problem, with recent methods becoming increasingly so-
phisticated and accurate [6} |10} [8]. Besides, the emergence
of datasets has also helped the field to establish a unified
standard for rapid development, from THUMOS 14 [5]], Ac-
tivityNet [4] to HACS [11]. However building a practical
temporal action localization framework in the wild, is still
challenging due to two reasons: (1)the smoothing temporal
transition makes the boundary of each instance very unclear,
and (2)the temporal scales for each actions are extremely
different from seconds to few minutes. Recently, a newly
collected large-scale dataset, FineAtion [7]] was proposed,
which plays more attention to practical challenges, such as
fine-grained actions and short-term segments.

During the recent years, the actionness methods [[6] have
shown dominant and superior performance for temporal ac-
tion localization. The BMN [|6]] achieves action detection in
a two-stage fashion: first it enumerates all discrete segments
as pre-defined anchors and extracts a boundary-sensitive
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Figure 1. The entire pipeline for temporal action localization.

feature for each proposal, and then predicts a category-
agnostic tloU score for each proposal. In the second stage,
a video-level classifier is used to determine the action cate-
gory for all segments in one video.

This separate design has achieved excellent performance
in some datasets [4]. While, for a more fine-grained
dataset [7]], there are multiple classes of atomic actions in
one video (10.74% videos on FineAction, while only 0.15%
videos on ActivityNet), and the design of action classifica-
tion module for each proposal is crucial. We propose a sim-
ple and efficient clip-classification module (CCM) to realize
the independent predictions for each proposal, which helps
to improve the overall mAP of the detection framework.

2. Our Approach

We apply BMN [6] as the baseline to generate action
proposals. In addition, we use an efficient clip-level classi-
fication algorithm to help classify the proposal.

Specifically, we address the problem of finding actions
from video input V' € R!*3X"Xw_ \here t is the length
of the video frames, h and w are the height and width of
the frame. We use the pre-trained SlowFast [3] to perform
feature extraction on the video clip, and the sampling inter-
val is 7. In order to facilitate a unified training dataloader,



we resize the feature to a fixed length f € RE*?. The
BMN algorithm uses 2d-grid to enumerate all discrete pro-
posals to perform classification and regression of tloU for
the ground-truth action segments. We input this feature 1d
feature f into the Temporal Evaluation Module (TEM) and
Proposal Evaluation Module (PEM) for proposal detection
learning.

Following [6], Soft-NMS [l1] is used to remove the re-
dundant temporal proposals. We finally select the top 100
proposals according to their scores as the final detection re-
sults for evaluation.

Unlike 99.85% videos in ActivityNet [4], which has only
a unique category, 10.74% of the videos in FineAction [[7]
contain multiple categories. It is very necessary to classify
different proposals independently. In order to get the clas-
sification label of the proposal, a corresponding classifier
is needed to be trained. However, directly performing the
proposal-level classification on the 2d-grid will bring ex-
tremely high memory consumption. We simplify it to pre-
dict each clip in the 1d time dimension. The classification
result on the clip-level is denoted as p € R7*¢, and then
the action label of each proposal is obtained by the average
category probability of the proposal interval.

Different from the proposal detection branch, the clas-
sification branch requires more global context. We need to
separate the video features for detection branch and the clas-
sification branch. Therefore, we add multiple non-local [9]
modules to enhance the representation for clip-level classi-
fication.

3. Experiments

In this section, we firstly describe the implementation
details. Then the proposed approach will be decomposed
step-by-step to reveal the effect of each component.

3.1. Implementation Details

FineAction [7]. The temporal action localization task in
FineAction involves 106 action categories. At the submis-
sion, we use 8440 untrimmed training videos and 4174
untrimmed validation videos to train our model and infer-
ence 4118 untrimmed testing videos. For all ablation study,
we only train on the training set.

Evaluation metrics. Following conventional metrics [4],
we use the mean Average Precision (mAP) as the perfor-
mance metric, which is defined as the mean of all mAP val-
ues computed with tloU thresholds between 0.5 and 0.95
with a step size of 0.05.

Training Parameter. Following traditional protocols [6],
the features are re-scaled to 100 clips (L = 100) for the
following experiments. We employ the step decay schedule
with an initial learning rate 0.001 and drop gamma 0.1 at
7 epochs . The networks are optimized for 9 epochs using

Feature | AR@AN [ AP@0.5 | AP@0.75 | AP@0.95 [ mAP |
13D +Video CLS | 1947% | 12.72% | 17.84% 278% | 8.12%
I3D +Clip CLS | 19.05% | 16.00% | 9.74% 330% | 10.09%
SF50 1878% | 1652% | 1031% | 3.44% | 10.60%
SF101 18.57% | 1659% | 1026% | 3.41% | 10.59%
SF50+SF101 19.02% | 1735% | 1057% | 3.62% | 11.06%
+3crop 1922% | 17.50% | 10.70% | 370% | 11.13%
+NL 1878% | 16.65% | 1023% | 3.61% | 10.61%
+LGTE 1942% | 1851% | 11.27% | 4.13% | 11.81%
+TemporalShift | 19.78% | 19.04% | 11.72% | 426% | 12.22%

Table 1. Compare feature representation for BMN module on the
FineAction validation set.

Adam optimizer with a weight decay of 1e—4. We construct
each mini-batch for training from 16 random videos.

3.2. Ablation Study

We will introduce the improvement components of the
algorithm in detail below.

Features Enhancement. Robust video features play an im-
portant role to improve the performance of temporal ac-
tion localization. We first compare the official I3D[2] fea-
ture with a pre-trained SlowFast [3] network for feature
extraction. From Table both SlowFast-50 (SF50) and
SlowFast-101 (SF101) can significantly improve the mAP
with more than 0.5%. Therefore, we further concatenate
these two features, and the ensemble model achieves 0.97%
mAP improvement.

In addition, we uniformly sample 3 crops of 256 x 256
to cover the spatial dimensions and average the feature. The
improvement is not obvious.

We adopt a temporal shift strategy [8] for data augmen-
tation. The overall mAP increase is around 0.3%.

We improve the representation with more temporal con-

text. We compared the non-local [9] and LGTE [8]] module,
and found that the LGTE module can significantly improve
the performance of BMN with 1.2% mAP. Non-local fea-
tures show inferior improvement for the BMN model, since
it will smooth the video features, which will hinder the pre-
cise detection edge.
Clip-level Classification Module. For the improvement of
the classification model, we directly stack 4 1D-Conv-ReLu
blocks as the baseline, and then insert the Non-Local [9]]
module in each block. Experiments shows that non-local
is very effective for clip-level classification. We finally
adopted the 4-layer non-local design.

‘ Feature ‘ w/o NL ‘ +1 NL ‘ +2NL ‘ +3NL ‘ +4NL ‘
13D 65.77% | 69.92% | 72.22% | 74.15% | 75.61%
SF50 81.56% | 83.99% | 85.64% | 85.76% | 86.44%
SF101 83.66% | 85.11% | 87.06% | 87.53% | 87.74%
Table 2. Compare feature representation for clip-level classifica-
tion module on the FineAction validation set.




4. Conclusion

The main contribution to the competition is still feature
representation. In addition, clip-level classification is also
very important for fine-grained TAL tasks.
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