# Large-scale Video-Language Pre-training



## Mike Z. SHOU

Asst Prof, National U. of Singapore Oct 24, 2022

https://sites.google.com/view/showlab



Deeper

Action



## Why large-scale pre-training?

### Trend: Simple action $\rightarrow$ Fine-grained action



[credit to DeeperAction Workshop]

### Trend: Action classification/detection → Personal AI Assistant



[ECCV'22] Wong, Chen, Wu, Lei, Mao, Gao, Shou. "AssistQ: Affordance-centric Question-driven Task Completion for Egocentric Assistant".

## Why large-scale Video-Language Pre-training (VLP)?



[credit to Zhe Gan]



[credit to Zhe Gan]

### HowTo100M [ICCV 2019] -- large, noisy



### WebVid 2.5M [ICCV 2021] -- high quality text



Lonely beautiful woman sitting on the tent looking outside. wind on the hair and camping on the beach near the colors of water and shore. freedom and alternative tiny house for traveler lady drinking.



Cabeza de toro, punta cana/ dominican republic - feb 20, 2020: 4k drone flight over coral reef with manta



Female cop talking on walkietalkie, responding emergency call, crime prevention



Billiards, concentrated young woman playing in club.



Kherson, ukraine - 20 may 2016: open, free, rock music festival crowd partying at a rock concert. hands up, people, fans cheering clapping applauding in kherson, ukraine - 20 may 2016, band performing



Runners feet in a sneakers close up. realistic three dimensional animation.

6

Mike Shou



[credit to Zhe Gan]

## **VLP** Models

### Early works are based on extracted features, not end-to-end

#### ICCV'19, Google, VideoBERT



#### CVPR'20, UTS, ActBERT



#### ICLR'21, Facebook, SSB



## **VLP** Models

### Better performances achieved with end-to-end training, as expected

#### CVPR'21, Microsoft, ClipBert



#### ICCV'21, VGG @ Oxford, Frozen-in-Time





### Better performances achieved with end-to-end training, as expected



Frame-level,

No object / region info...

### The strong correspondence between objects in videos and in sentence

"A little girl dancing to music and a teenage girl using a computer"



### Modeling objects in E2E VLP -- why not video?

*#1 Computational expensive:* 

- 10s video, even sample 1 frame per second, 10 frames
- For each frame, typically ~30 boxes

#2 High redundancy over frames -- makes optimization challenging

### Maximize object info vs. Minimize #regions



## **Object-aware Video-language Pre-training for Retrieval**

Joint work

w/ Alex Jinpeng Wang



IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2022.

https://github.com/FingerRec/OA-Transformer

### Traditional two-stream model e2e VLP model



## **Object-Aware Transformer**

### 1 single anchor frame for encoding object information



Mike Shou

## **Object-Aware Transformer**



Mike Shou

### **Object-aware contrastive loss between 4 streams**



During downstream fine-tuning & inference, no need to run object detection and we remove the 2 object streams to ensure high efficiency



|           | Method                      | Years    | Vis Enc. Init.     | Pretrained Data        | R@1  | R@5  | R@10 | MedR |
|-----------|-----------------------------|----------|--------------------|------------------------|------|------|------|------|
| UTS       | → ActBERT [48]              | CVPR'20  | VisGenome          | [136M] HowTo100M       | 16.3 | 42.8 | 56.9 | 10.0 |
|           | VidTranslate [16]           | Arxiv'20 | IG65M              | [136M] HowTo100M       | 14.7 | -    | 52.8 |      |
|           | NE [1]                      | AAAI'21  | ImageNet, Kinetics | [136M] HowTo100M       | 17.4 | 41.6 | 53.6 | 8.0  |
| Microsoft | → ClipBERT [19]             | ICCV'21  | -                  | [5.6M] COCO, VisGenome | 22.0 | 46.8 | 59.9 | 6.0  |
| -         | MMT [12]                    | ECCV'20  | Numerous experts   | [136M] HowTo100M       | 26.6 | 57.1 | 69.6 | 4.0  |
| Oxford II | Frozen [4]                  | ICCV'21  | ImageNet           | [3M] CC3M              | 25.5 | 54.5 | 66.1 | 4.0  |
| 0,0100.   | Frozen [4]                  | ICCV'21  | ImageNet           | [5.5M] CC3M, WebVid-2M | 31.0 | 59.5 | 70.5 | 3.0  |
|           | Frozen[Our Imp.]            | ICCV'21  | ImageNet           | [5.5M] CC3M, WebVid-2M | 33.2 | 61.5 | 71.9 | 3.0  |
| Facebook  | → Support Set [31]          | ICLR'21  | IG65M, ImageNet    | [136M] HowTo100M       | 30.1 | 58.5 | 69.3 | 3.0  |
|           | OA-Trans                    |          | ImageNet           | [2.5M] Webvid-2M       | 32.7 | 60.9 | 72.5 | 3.0  |
|           | OA-Trans                    |          | ImageNet           | [5.5M] CC3M, WebVid-2M | 35.8 | 63.4 | 76.5 | 3.0  |
|           | <b>OA-Trans</b> ‡           |          | CLIP-WIT           | [5.5M] CC3M, WebVid-2M | 39.4 | 68.8 | 78.3 | 2.0  |
|           | OA-Trans <sup>‡</sup> [12F] |          | CLIP-WIT           | [5.5M] CC3M, WebVid-2M | 40.9 | 70.4 | 80.3 | 2.0  |

Table 1. Comparison with state-of-the-art results on MSRVTT for text-to-video retrieval. ‡ denotes the model is initialized with weights from CLIP [33]. Vis Enc. Init.: Datasets that visual encoders' initial weights are trained on.

## From retrieval to more tasks



- Good on retrieval task
- For other tasks like QA, need more complex fusion

#### CVPR'21, Microsoft, ClipBert



Video

## From retrieval to more tasks



[credit to Zhe Gan]

## A closer look at these versatile VLP models

#### Often have multiple separate components



#### Arxiv'21, Microsoft, VIOLET

#### ICML'21, MERLOT



#### Often have multiple separate components



#### **Issues:**

- (1) Hard to optimize jointly, different components might not be compatible
- (2) Redundancy between networks --> share some parameters to save Flops?



- (1) All components in one single network
- (2) All downstream tasks powered by one pretrained model



## All in One: Exploring Unified Video-Language Pre-training

Joint work

w/ Alex Jinpeng Wang



Preprint, 2022.

https://github.com/showlab/all-in-one



## Temporal Token Rolling Layer

#### The caption corresponds to multiple frames





#### Computational cost is high



- Model both cross-modality and inter video frames
  - Parameter-free



## Framework





## Framework



## All-in-one: comparisons with SOTA



#### Text-to-video Retrieval



Efficiency (smaller, better)

| Method        | Nets     | PT Data         | Params | Flops  | Frames       |      | 9K Trai | n    |      | 7K Trai | n    |
|---------------|----------|-----------------|--------|--------|--------------|------|---------|------|------|---------|------|
|               |          |                 |        |        |              | R@1  | R@5     | R@10 | R@1  | R@5     | R@10 |
| ActBERT [63]  | T+O+V+CE | HowTo           | 275M   | -      | 32           | -    | -       | -    | 16.3 | 42.8    | 56.9 |
| ClipBERT [29] | T+V+CE   | COCO+VG         | 137M   | 183.2G | $8 \times 2$ | -    | -       | -    | 22.0 | 46.8    | 59.9 |
| TACo [57]     | T+V+CE   | HowTo           | 212M   | 140.5G | 48           | 28.4 | 57.8    | 71.2 | 24.8 | 52.1    | 64.0 |
| VIOLET [12]   | T+V+CE   | CC+WebVid       | 198M   | 351.4G | 16           | 34.5 | 63.0    | 73.4 | -    | -       | -    |
| Frozen [4]    | T+V      | CC+WebVid       | 232M   | 217.3G | 8            | 31.0 | 59.5    | 70.5 | -    | -       | -    |
| OA-Trans [48] | T+O+V    | CC+WebVid       | 232M   | 217.3G | 8            | 35.8 | 63.4    | 76.5 | 32.1 | 61.0    | 72.9 |
| All-in-one-B  | CE       | HowTo           | 110M   | 58.7G  | 3            | 29.5 | 63.3    | 71.9 | 26.5 | 59.4    | 69.8 |
| All-in-one-B  | CE       | HowTo+WebVid    | 110M   | 58.7G  | 3            | 37.1 | 66.7    | 75.9 | 33.8 | 64.2    | 74.3 |
| All-in-one-B+ | CE       | CC+WebVid       | 110M   | 58.7G  | 3            | 39.7 | 67.8    | 76.1 | 35.9 | 66.1    | 75.1 |
| All-in-one-B+ | CE       | CC+HowTo+WebVid | 110M   | 58.7G  | 3            | 41.8 | 68.5    | 76.7 | 37.3 | 66.4    | 75.6 |

Text-to-video Retrieval on MSR-VTT, ActivityNet Caption, DiDemo

(a) The retrieval performance on MSR-VTT 9K and 7K training split. For Nets, "O" is object extractor. HowTo is short for HowTo100M [40]. Notice that COCO [33], CC (short for Conceptual Captions [43]) and VG (short for Visual Genome [26]) are all image-text datasets, which are not suitable for temporal modeling during pre-training.

| Method        | Frames       | R@1  | R@5  | R@10 | MdR  |
|---------------|--------------|------|------|------|------|
| Dense [25]    | 32           | 14.0 | 32.0 | -    | 34.0 |
| FSE [61]      | 16           | 18.2 | 44.8 | -    | 7.0  |
| HSE [61]      | 8            | 20.5 | 49.3 | -    | -    |
| ClipBERT [29] | $4 \times 2$ | 20.9 | 48.6 | 62.8 | 6.0  |
| All-in-one-B  | 3            | 21.5 | 50.3 | 65.5 | 6.0  |
| All-in-one-B  | $3 \times 3$ | 22.4 | 53.7 | 67.7 | 5.0  |

| (b) | ActivitvNet | Caption | val1 s | set. |
|-----|-------------|---------|--------|------|
| (~) |             | eup mon |        |      |

| Method                                             | Frames                                                                           | R1                           | R5                           | R10               | MdR                       |
|----------------------------------------------------|----------------------------------------------------------------------------------|------------------------------|------------------------------|-------------------|---------------------------|
| FSE [61]<br>CE [34]<br>ClipBERT [29]<br>Frozen [4] | $   \begin{array}{r}     16 \\     16 \\     8 \times 2 \\     8   \end{array} $ | 13.9<br>16.1<br>20.4<br>31.0 | 36.0<br>41.1<br>48.0<br>59.8 | -<br>60.8<br>72.4 | 11.0<br>8.3<br>6.0<br>3.0 |
| All-in-one-B<br>All-in-one-B                       | $3 \\ 3 \times 3$                                                                | 31.2<br><b>32.7</b>          | 60.5<br>61.4                 | 72.1<br>73.5      | 3.0<br><b>3.0</b>         |

#### (c) DiDeMo test set.

TABLE 3: Comparison with state-of-the-art methods on text-to-video retrieval. We gray out dual-stream networks that only do retrieval tasks. Notice that OA-Trans [48] uses additional offline object features.

## All-in-one: comparisons with SOTA

| Video QA on TGIF-Q | A, MSRVTT, | MSVD-QA, | <b>TVQA</b> |
|--------------------|------------|----------|-------------|
|--------------------|------------|----------|-------------|

| Method                                        | Nets                                 | Params | Pre-training Data           | Frames                                         | Action               | Transition           | FrameQA              |
|-----------------------------------------------|--------------------------------------|--------|-----------------------------|------------------------------------------------|----------------------|----------------------|----------------------|
| Heterogeneous [11]<br>HCRN [28]<br>QueST [20] | T+V+LSTM<br>  T+V+LSTM<br>  T+V+LSTM | -      | -                           | 35<br>16<br>16                                 | 73.9<br>75.0<br>75.9 | 77.8<br>81.4<br>81.0 | 53.8<br>55.9<br>59.7 |
| ClipBERT [29]                                 | <i>T+V+CE</i>                        | 137M   | COCO + Visual Genome        | $\begin{array}{c} 1 	imes 1 \\ 16 \end{array}$ | 82.9                 | 87.5                 | 59.4                 |
| VIOLET [12]                                   | <i>T+V+CE</i>                        | 198M   | CC3M + WebVid               |                                                | 87.1                 | 93.6                 | -                    |
| All-in-one-Ti                                 | CE                                   | 12M    | WebVid + HowTo100M          | 3                                              | 80.6                 | 83.5                 | 53.9                 |
| All-in-one-S                                  | CE                                   | 33M    | WebVid + HowTo100M          | 3                                              | 91.2                 | 92.7                 | 64.0                 |
| All-in-one-B                                  | CE                                   | 110M   | WebVid + HowTo100M          | 1                                              | 92.9                 | 94.2                 | 62.5                 |
| All-in-one-B+                                 | CE                                   | 110M   | WebVid + HowTo100M          | 3                                              | 92.7                 | 94.3                 | 64.2                 |
| All-in-one-B+                                 | CE                                   | 110M   | CC3M + WebVid               | 3                                              | 94.4(7.3↑)           | 94.5(0.9↑)           | 66.4(7.0↑)           |
| All-in-one-B+                                 | CE                                   | 110M   | CC3M + WebVid + HowTo100M   | 3                                              | <b>96.3(9.2</b> ↑)   | <b>95.5(1.9</b> ↑)   | <b>67.3 (7.9↑)</b>   |
| All-in-one-B [384]                            | CE                                   | 110M   | WebVid + HowTo100M          | 3                                              | 94.7                 | 95.1                 | 65.4                 |
| All-in-one-B *                                | CE                                   | 110M   | CC3M + WebVid + YT-Temporal | 3                                              | 95.5                 | 94.7                 | 66.3                 |

(a) Three sub-tasks on TGIF-QA test set (the first row are methods w/o. pre-training). "T" refers to text encoder, "V" is video encoder and "CE" is cross-modality encoder. 384 means the resolution is  $384 \times 384$  for each frame while the default is  $224 \times 224$ .

| Method                  | Frames       | Accuracy           | Method                | Frames       | Accuracy                        | Method            | Frames       | Accuracy   |  |
|-------------------------|--------------|--------------------|-----------------------|--------------|---------------------------------|-------------------|--------------|------------|--|
| AMU [54]                | 16           | 32.5               | QueST [20]            | 10           | 36.1                            | PAMN [22]         | 32           | 66.3       |  |
| Heterogeneous [11]      | 35           | 33.0               | HCRN [28]             | 16           | 36.1                            | Multi-task [21]   | 16           | 66.2       |  |
| HCRN [28]               | 16           | 35.6               | SSML [2]              | 16           | 35.1                            | STAGE [30]        | 16           | 70.5       |  |
| ClipBERT [29]           | $4 \times 2$ | 37.4               | CoMVT [42]            | 30           | 42.6                            | CA-RN [13]        | 32           | 68.9       |  |
| VIOLET [12]             | 16           | 43.1               | Just-Ask † [56]       | 32           | 46.3                            | MSAN [23]         | 40           | 70.4       |  |
| All-in-one-S            | 3            | 39.5               | All-in-one-S          | 3            | 41.7                            | All-in-one-S      | 3            | 63.5       |  |
| All-in-one-B            | 3            | 42.9 (0.2↓)        | All-in-one-B          | 3            | 46.5 (0.2↑)                     | All-in-one-B      | 3            | 69.8       |  |
| All-in-one-B            | $3 \times 3$ | 44.3 (1.2)         | All-in-one-B          | $3 \times 3$ | 47.9 (1.6)                      | All-in-one-B      | $3 \times 3$ | 71.3 (1.1) |  |
| All-in-one-B+           | 3            | <b>44.6</b> (1.5↑) | All-in-one-B+         | 3            | <b>48.2</b> (1.9 <sup>†</sup> ) | All-in-one-B+     | 3            | 71.5       |  |
| All-in-one-B *          | 3            | 46.8               | All-in-one-B *        | 3            | 48.3                            | All-in-one-B *    | 3            | 72.0       |  |
| (b) MSRVTT-QA test set. |              |                    | (c) MSVD-QA test set. |              |                                 | (d) TVQA val set. |              |            |  |

TABLE 2: Comparison with state-of-the-art methods on VQA. The columns with gray color are **open-ended VQA** and the others are **multiple-choice VQA**. † means use additional large-scale VQA dataset HowToVQA60M [56] for pre-training. \* means pre-training with additional YT-Temporal 180M [60].

Mike Shou

## All-in-one: comparisons with SOTA

| Method                    | Frames       | MSRVTT      | LSMDC                    |
|---------------------------|--------------|-------------|--------------------------|
| [SFusion [58]             | 40           | 83.4        | 73.5                     |
| ActBERT [63]              | 32           | 85.7        | -                        |
| ClipBERT [29]             | $8 \times 2$ | 88.2        | -                        |
| MERLOT [60]               | 8            | -           | 81.7                     |
| VIOLET [12]               | 16           | -           | 82.9                     |
| All-in-one-B              | 3            | 91.4        | 83.1                     |
| All-in-one-B              | $3 \times 3$ | 92.0        | 83.5                     |
| All-in-one-B+             | 3            | 91.9 (3.8↑) | 83.9 (1.0 <sup>+</sup> ) |
| All-in-one-B *            | 3            | 92.3        | 84.4                     |
| All-in-one-B (zero-shot)  | 3            | 80.3        | 56.3                     |
| All-in-one-B+ (zero-shot) | 3            | 82.2        | 58.1                     |

#### Multiple-choice selection

## TABLE 4: Comparison with state-of-the-art methods on multiple-choice task.

#### Visual commonsense reasoning

| Method                                       | PT Data                             | Mask   | Accuracy                                           |
|----------------------------------------------|-------------------------------------|--------|----------------------------------------------------|
| MERLOT [60]<br>MERLOT [60]                   | CC3M+COCO<br>HowTo100M              | √<br>✓ | 58.9<br>66.3                                       |
| All-in-one-B<br>All-in-one-B<br>All-in-one-B | CC3M+COCO<br>HowTo100M<br>HowTo100M | √<br>√ | <b>60.5 (1.6</b> ↑)<br>65.2<br><b>68.4 (2.1</b> ↑) |

TABLE 6: The visual commonsense reasoning result with different source of pre-training data.

| Method                     | Parameters | #Frames |       | K400  |        |       | HMDB5 | 1      |       | UCF101 |        |
|----------------------------|------------|---------|-------|-------|--------|-------|-------|--------|-------|--------|--------|
|                            |            |         | Top-1 | Top-5 | Top-10 | Top-1 | Top-5 | Top-10 | Top-1 | Top-5  | Top-10 |
| MIL-NCE [39]               | 157M       | 32      | -     | -     | -      | 53.1  | 87.2  | 92.8   | 82.7  | -      | -      |
| Frozen [4]                 | 232M       | 8       | 50.5  | 80.7  | 90.2   | 54.3  | 88.0  | 94.8   | 81.3  | 94.3   | 96.2   |
| Time Average               | 110M       | 3       | 44.3  | 75.2  | 87.3   | 43.1  | 75.5  | 90.5   | 77.6  | 86.4   | 90.9   |
| All-in-one-B               | 110M       | 3       | 49.8  | 79.8  | 90.7   | 51.9  | 84.1  | 93.4   | 81.1  | 93.8   | 95.5   |
| All-in-one-B               | 110M       | 8       | 52.4  | 83.2  | 92.9   | 54.7  | 88.2  | 95.2   | 82.8  | 95.1   | 96.9   |
| All-in-one-B+ (Not Shared) | 110M       | 8       | 53.2  | 83.5  | 92.7   | 55.2  | 89.1  | 95.8   | 84.1  | 95.7   | 97.8   |
| All-in-one-B+ (Shared)     | 110M       | 8       | 51.4  | 78.5  | 89.9   | 53.1  | 87.1  | 93.2   | 82.0  | 94.0   | 96.0   |

#### Action recognition

TABLE 9: The linear probe results on action recognition benchmarks over kinetics 400, hmdb51 and UCF101 datasets. Notice that two pre-text heads are not shared for image-text and video-text pairs and the video-text head are used for fine-tuning.

## Summary

#### All-in-one, save 50% parameters of SOTA models



#### Temporal Token Rolling -- free of parameter



#### SOTA results



#### Code & models released



#### HowTo100M [ICCV 2019]



### WebVid 2.5M [ICCV 2021]



Lonely beautiful woman sitting on the tent looking outside. wind on the hair and camping on the beach near the colors of water and shore, freedom and alternative tiny house for traveler lady drinking.



Cabeza de toro, punta cana/ dominican republic - feb 20, 2020: 4k drone flight over coral reef with manta



Female cop talking on walkietalkie, responding emergency call, crime prevention



Billiards, concentrated young woman playing in club.



Kherson, ukraine - 20 may 2016: open, free, rock music festival crowd partying at a rock concert. hands up, people, fans cheering clapping applauding in kherson, ukraine - 20 may 2016, band performing



Runners feet in a sneakers close up. realistic three dimensional animation.

### **AR/VR** smart glass



### **Robot learning**



[credit to Kristen]

## Would VLP model pretrained on 3<sup>rd</sup> person view videos work well for egocentric video?

If not, how can we create an egocentric video-language pretrained (VLP) model?

## **Egocentric Video-Language Pretraining**

Joint work

w/ Kevin Qinghong Lin



Thirty-sixth Conference on Neural Information Processing Systems (NeurIPS), 2022.

https://github.com/showlab/EgoVLP

## Motivation

- Previous egocentric datasets are of small data scale and domain-specific, making videolanguage pre-training impossible.
- Ego4D unlocks Egocentric VLP!

| Dataset                  | Ego?         | Domain        | Dur (hrs)       | # Clips     | # Texts         | Example         |
|--------------------------|--------------|---------------|-----------------|-------------|-----------------|-----------------|
| MSR-VTT [17]             | X            | diverse       | 40              | 10 <b>K</b> | 200K            | COOL WALL       |
| YouCook2 [18]            | ×            | cooking       | 176             | 14K         | 14K             |                 |
| ActivityNet Captions [7] | ×            | action        | 849             | 100K        | $100\mathbf{K}$ | -               |
| WebVid-2M [11]           | ×            | diverse       | 13K             | 2.5M        | 2.5M            |                 |
| HowTo100M [10]           | ×            | instructional | 134K            | 136M        | 136M            | 3rd-person view |
| Charades-Ego [19]        | ✓            | home          | 34              | 30K         | 30K             |                 |
| UT-Ego [20]              | $\checkmark$ | diverse       | 37              | 11K         | 11 <b>K</b>     |                 |
| Disneyworld [21]         | $\checkmark$ | disneyland    | 42              | 15K         | 15K             |                 |
| EPIC-KITCHENS-100 [22]   | $\checkmark$ | kitchen       | 100             | 90K         | 90K             |                 |
| EgoClip                  | $\checkmark$ | diverse       | $\mathbf{2.9K}$ | 3.8M        | 3.8M            | 1st-person view |

Table 1: Comparison of our proposed EgoClip pretraining dataset against the mainstream videolanguage datasets (top) and egocentric datasets (bottom).

## Ego4D Data: everyday activity around the world



### Data so far:

- 3,600+ hours of video
- ~900 camera wearers
- Geographic diversity
- Occupational diversity
- Unscripted daily life activity
- ~80 real-world scenarios

• Research Q1: How to create pre-training **dataset** of video-text pairs?

• Research Q2: How to design pre-training **model**?

• Research Q3: What benchmark we shall evaluate on?



• Create a Large-scale egocentric VL Pre-training set of **3.8M video-text pairs** from Ego4D: EgoClip

- Propose an Egocentric-friendly VL pretraining objective: **EgoNCE**
- Construct a development set for designing Egocentric VL Pre-training: EgoMCQ

## Why need a dev set?



#### Issue:

when the downstream benchmark is very different from the pretraining task and dataset, the feedback signal may not be accurate

## Why need a dev set?

#### **Our Egocentric VLP:**

- Pretraining data: in-the-wild
- Pretraining task: video-text matching

| Downstream Benchmark   | Domain        | Task                                                       |
|------------------------|---------------|------------------------------------------------------------|
| EPIC-KITCHENs          | Kitchen 🗙     | video-text retrieval 🔽                                     |
| Charades-Ego           | Indoor 🗙      | action recognition $	imes$                                 |
| Ego4D benchmarks       | In-the-wild 🗹 | moment localization, object state change detection, etc. 🗙 |
| What we'd like to have | In-the-wild 🗹 | video-text matching 🔽                                      |

## Why need a dev set?





• Create a Large-scale egocentric VL Pre-training set of **3.8M video-text pairs** from Ego4D: EgoClip

• Propose an Egocentric-friendly VL pretraining objective: EgoNCE

• Construct a development set for designing Egocentric VL Pre-training: **EgoMCQ** 

- Significant gains on **5 benchmarks** across **3 datasets**:
  - [EPIC-KITCHENS-100] Multi-Instance Retrieval: nDCG (avg) from 53.5% to 59.4%. (+5.9%)
  - [Ego4D Challenges ] Natural Language Query: R@1 (IoU=0.3) from 5.45% to 10.84%. (+5.4%)
  - [Ego4D Challenges] Moment Query: R@1 (IoU=0.3) from 33.45% to 40.43%. (+7.0%)
  - [Ego4D Challenges ] Object State Change Classification: Acc from 68.7% to 73.9%. (+5.2%)
  - [ Charades-Ego ] Action-recognition: MAP from 30.1% to 32.1%. (+2.0%)

### **Object-aware Video-language Pre-training for Retrieval. CVPR 2022.**

The first to incorporate object region information into video-language pretraining

https://github.com/FingerRec/OA-Transformer

### All in One: Exploring Unified Video-Language Pre-training. Preprint, 2022.

All components in 1 single network & all downstream tasks powered by 1 pretrained model, SOTA on 9 datasets across 4 tasks

https://github.com/showlab/all-in-one

### Egocentric video-language pretraining. NeurIPS, 2022.

The first to explore egocentric VLP, significant gains on 5 benchmarks across 3 datasets, champion in Ego4D 2022 & Epic-Kitchens 2022 challenges. https://github.com/showlab/EgoVLP

# Thank you!





https://sites.google.com/view/showlab