Video Understanding for Robotics

Xiaolong Wang UC San Diego

An agent observes a dynamic world

Research in Videos: Activity Understanding

ActivityNet 300K videos

Kinetics 650K videos

Research in Videos: Perceiving 3D Structure

Hampali et al. 2019

Garcia-Hernando et al. 2018

Video Understanding -> Imitation Learning

Space-Time and 3D Understanding

http://www.inclusivedesigntoolkit.com/UCdex/dex.html Hasson, et al. "Learning joint reconstruction of hands and manipulated objects." CVPR 2019. https://www.dlr.de/rm/en/desktopdefault.aspx/tabid-11886/#gallery/28915

Hand Object Interaction in Space-Time

Materzynska et al. Something-Else: Compositional Action Recognition with Spatial-Temporal Interaction Networks. CVPR 2020.

We learn a task reward with a graph abstraction from diverse videos. No manual reward design is required for goal-conditioned RL.

Graph Inverse Reinforcement Learning from Diverse Videos Sateesh Kumar, Jonathan Zamora*, Nicklas Hansen*, Rishabh Jangir, Xiaolong Wang CoRL (Oral Presentation)

How are Rewards Obtained?

Computer Games

Directly obtained from environment

Real World

Often **manually** designed for each task separately

Can we learn rewards directly from Videos?

Learn Reward **Function**

Collect Video Demonstrations

Learn Reward from Videos

- Scalability
- Unified pipeline

Learn Policy in Simulation

Deploy Learned Policy in Real

Ease of data collection

Domain Gap

Demonstrations

Large variations in visual appearance, viewpoint, object shapes

Simulation

Despite large variance in videos, the underlying scene structure remains largely similar for manipulation tasks

Peg In Box

Push

Reach

The precise details of how the door is opened don't matter, what matters is whether it is open

GraphIRL learns a task reward function via a graph abstraction through its 4 components

Graph Inverse RL

Spatial Interaction Networks

The **self** representation of an object can be written as:

$$f_{S}(O_{i}) = \phi_{S}(O)$$

Similarly, the interactional representation of an object is:

$$\sum_{j=1}^{m} \phi_{\text{in}}((O_{j}, O_{j}))$$

The final representation corresponding to a frame is:

$$f_{O}(O_{i}) = \phi_{agg}(f_{s} + f_{in})$$

RL w/ Learned Reward

Frame (a)

Video Sequence #3

Frame (b)

Frame (c)

The learned reward function is then used for Reinforcement Learning

Learned Representations to Reward

• Representative goal-frame embedding:

$$g = \sum_{i=1}^{n} \psi(I_{m_i}^{i})$$

• The reward can be constructed as:

$$R = -\frac{1}{c} ||\psi(o) - g||^2$$

Current

Observation

Diverse Demonstrations for Reward Learning

Successful Trial #1 🔽

Robot Manipulation in Simulation

- GraphIRL outperforms Vision-based baselines by upto 40%
- GraphIRL solves all tasks without using any task-specific task reward

s by upto 40% ask-specific task reward

Task: Reach

XIRL [Zakka et al., 2022]

Success Rate: 26%

GraphIRL [Ours]

Success Rate: 86%

Task: Push

XIRL [Zakka et al., 2022]

Success Rate: 27%

GraphIRL [Ours]

Success Rate: 60%

XIRL [Zakka et al., 2022]

Success Rate: 6%

Task: Peg in Box

GraphIRL [Ours]

Success Rate: 53%

Video Understanding -> Imitation Learning

► 3D Structure?

Self-Supervised Geometric Correspondence for Category-Level 6D Object Pose Estimation in the Wild

Kaifeng Zhang¹, Yang Fu², Shubhankar Borse³, Hong Cai³, Fatih Porikli³, Xiaolong Wang² ¹Tsinghua University, ² UC San Diego, ³ Qualcomm AI Research

Wild6D dataset. Yang Fu and Xiaolong Wang. NeurIPS 2022.

Wild6D Examples

- Recording with iPhone or iPad.

• More than 5,000 RGBD videos across 1,700 objects (>1.1 million images). • We provide annotations for 486 videos over 162 instances as a test set

Our goal: learning 2D-3D dense correspondences for self-supervised category-level 6D pose estimation on large-scale in-the-wild images.

Method **Overview**

Image embedding

Input Image

We build dense correspondences between pixels and mesh vertices via feature similarity in a shared embedding space.

Method Overview

Different object instances correspond to the same canonical space.

Method Overview

We apply pose fitting to get the estimated pose from correspondence.

Pose fitting

2D-3D correspondence

We propose novel cycle consistency losses for training correspondence.

The instance cycle consistency penalizes over correspondence-projection disparity within an image-mesh pair.

(a) Instance cycle consistency

(b) Cross-instance and cross-time cycle consistency

Image /

Mesh /

We also go beyond a single image to cross-instance and cross-time images.

Cross-instance image /

Mesh /

Cross-time image /'

Mesh *j*'

(b) Cross-instance and cross-time cycle consistency

By building a 4-step cycle, we encourage different images to consistently correspond to the shared canonical space.

(b) Cross-instance and cross-time cycle consistency

By building a 4-step cycle, we encourage different images to consistently correspond to the shared canonical space.

DexMV Platform for Imitation Learning

DexMV: Imitation Learning for Dexterous Manipulation from Human Videos. Yuzhe Qin*, Yueh-Hua Wu*, Shaowei Liu*, Hanwen Jiang*, Ruihan Yang, Yang Fu, Xiaolong Wang ECCV 2022

DexMV Platform for Imitation Learning

Relocate

Place Inside

Pour

DexMV Platform

The Computer Vision System

• In computer vision system, we collect human demonstrations, perform 3D Pose Estimation, and motion retargeting to generate demonstrations.

Examples for Mustard Bottle

We can collect 100 demonstrations in 1 hour

Examples for Pour

We can collect 100 demonstrations in 1 hour

Hand Motion Retargeting

- We collect demonstration on human hand manipulating objects, but we need to perform imitation learning on a robot hand.
- Human and robot hand are different in both geometry and kinematics.
- We match the task space vectors (green dot arrows).

Examples for Hand Motion Retargeting

Examples for Hand Motion Retargeting

The Simulation System

with the demonstrations from the computer vision system

• In the simulation system, we perform imitation learning by augmenting the RL objective

Example for Pour with Trained Policy

Pure Reinforcement Learning

Imitation with Demonstration

Sim2Real with Xarm + Allegro Hand

Reinforcement Learning without Demonstrations

Yuzhe Qin, Hao Su, Xiaolong Wang. IROS 2022

Imitation Learning with Demonstrations

Video Understanding -> Imitation Learning

- Accurate
- Efficient
- Robust
- Safe

