

A One-Stage Method for FineAction Localization from Multiple Views

- Yepeng Tang^{1,2†}, Weining Wang³, Chunjie Zhang^{1,2}, Jie Jiang^{3,4},
 - Weitao Yuan^{3,4}, Sihan Chen^{3,4}, Jing Liu^{3,4}, Yao Zhao^{1,2}
- ¹ Institute of Information Science, Beijing Jiaotong University
- ² Beijing Key Laboratory of Advanced Information Science and Network Technology, **Beijing Jiaotong University**
 - ³ Institute of Automation, Chinese Academy of Sciences
 - ⁴ School of Artificial Intelligence, University of Chinese Academy of Sciences

⁺Intern at the Institute of Automation, Chinese Academy of Sciences.

Task Description

Temporal action Localization task:

- Untrimmed videos
- locating the starting and ending time of action instances
- classifying the action instances

Long Jump

[1] Challenge and Workshop on Localized and Detailed Understanding of Human Actions in Videos. https://deeperaction.github.io/fineaction/

Long Jump

Deeper Action

Evaluation Metrics

Temporal action localization

equal to a given threshold, the predicted action instance is true positive. computed with tloU thresholds between 0.5 and 0.95 with a step size of 0.05.

Temporal action proposal generation(sub task)

as a metric, where AN often varies from 0 to 100.

- Interpolated Average Precision (AP) is used as the metric for evaluating the results on each activity category. Then, the AP is averaged over all the activity categories (mAP). Given a predicted action instance, the temporal intersection over union (tloU) with a ground truth segment is calculated. If the tloU is greater or
- The official metric used in this task is the average mAP, which is defined as the mean of all mAP values

Average Recall (AR) calculated with multiple IoU thresholds is usually used as evaluation metric. To evaluate the relation between recall and proposals number, Average Recall (AR) with Average Number of proposals (AN) is evaluated, which is denoted as AR@AN. Moreover, area under the AR vs. AN curve (AUC) is also used

Mainstream Algorithms

Two-Stage Methods

BMN

[2] Tianwei Lin, et al. "Bmn: Boundary-matching network for temporal action proposal generation." ICCV 2019. [3] Zhiwu Qing, et al. "Temporal context aggregation network for temporal action proposal refinement." CVPR 2021. [4] Qiang Wang, et al. "RCL: Recurrent Continuous Localization for Temporal Action Detection." CVPR 2022.

Mainstream Algorithms

One-Stage Methods

AFSD

[5] Chuming Lin, et al. "Learning salient boundary feature for anchor-free temporal action localization." CVPR 2021.[6] Chenlin Zhang, et al. "Actionformer: Localizing moments of actions with transformers." ECCV 2022.

Actionformer

Our Approach

Dataset analysis

Database	Category	Video	Instance	Overlap	Duration	Action type	
MPII Cooking	65	45	5,609	0.1%	11.1 m	kitchons	
EPIC-Kitchens	4,025	700	89,979	28.1%	3.1 s	KIUIIEIIS	
FineGym V1.0	530	303	32,697	0.0%	1.7 s	anorta	
THUMOS14	20	413	6,316	17.5%	4.3 s	sports	
ActivityNet	200	19,994	23,064	0.0%	49.2 s		
HACS Segment	200	49,485	122,304	0.0%	33.2 s	daily events	
FineAction (Ours)	106	16,732	103,324	11.5%	7.1 s		

[7] Yi Liu, et al. "Fineaction: A fine-grained video dataset for temporal action localization." [8] Chenglu Wu, et al. "Learning Efficient Feature Representation for Temporal Action Localization."

11%

multi-label video

Input video

Our Approach

Pipeline:

- Feature Extraction
- Multi-view Feature Fusion
- One-stage Action Detection

Our Approach

Feature Extraction

Video Swin Transformer

[9] Ze Liu, et al. "Video swin transformer." CVPR 2022.[10] Bolin Ni, et al. "Expanding language-image pretrained models for general video recognition." ECCV 2022.

X-CLIP

Multi-view Feature Fusion

12 views 12 views

Our Approach

Our Approach

One-stage Action Detection

Fig. 1. An illustration of our Action-Former.

Input

Video

Actionformer

Clip

Embeddings

Detection Results

Feature VideoSwin X-CLIP VideoSwin+X-CLIP VideoSwin+X-CLIP (Multi-views

Experiments

	0.5	0.75	0.95	average
	35.46	20.22	3.43	21.00
	34.46	19.66	3.72	20.53
	36.26	21.12	3.76	21.76
5)	37.60	22.23	4.42	22.79

 The models detecting action instances from multiple views perform better than the models using a single view.

 Using a suitable multi-view feature fusion strategy can improve the performance of temporal action localization.

• The one-stage temporal action detector without extra classifiers can achieve a good result on Fineaction dataset.

THANKS

