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Abstract. Video anomaly analysis is important for industrial applications in
the real world. In particular, the urban pipe system is one of the most im-
portant infrastructures in a city. In order to ensure its normal operation, we
need to inspect pipe defects smartly. This is a technical report of UrbanPipe
challenge on the track of Fine-grained video anomaly recognition. The report
mainly focuses on our data processing, method explaining, model selection,
training and inferencing process during the competition. Four methods pro-
posed for this challenge are also generalizable and interpretable for tasks from
other domain.

Keywords: video anomaly recognition, multi-label, sampling strategy, model
capacity

1 Introduction

The video classification of urban pipelines has always been a relatively complex clas-
sification task. Compared with the previous urban pipeline datasets, this task has
great differences in data types, label granularity and dataset size. Based on above
characteristics, we propose four methods: the frame-based method, the video-based
method, the super-image-based method and dense-sampling-based method. Among
four methods, both video-based and super-image-based can achieve over 70%mAP
on the leaderboard. This report will focus on the descriptions of these four methods,
explaining the general ideas of the methods, and propose feasible strategies to fur-
ther improve the score.
According to our abstraction of the problem, the challenge has the following two dif-
ficulties:

1.1 Mapping Between Groundtruth and Assigned Labels

Due to ubiquitous hardware limitations, no matter which method we use, we in-
evitably need to sample the original video and assign weak multi-labels to the sam-
ples. Therefore, how to design an effective structure to improve the accuracy of the
mapping between the assigned label and groundtruth label of the sample is one of
the biggest difficulties in this challenge.
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Fig. 1. Method with different sampling strategies

In response to this difficulty, we designed four different sampling and label assign-
ment methods, respectively, in terms of mapping accuracy from low to high: frame-
based method, video-based method, super-image-based methods, dense sampling
method. four methods for this task are as presented in figure 1.
For frame-based methods, we sample frames in each video at time intervals and as-
sign the video’s label to the frames to train an image classifier. For the super-image-
based method, we extract 9 or 16 equidistant frames from each video to form a 3x3
or 4x4 super-image, and then assign the labels of the video to super-image to train
an image classifier. The video-based method is similar to this method, we only need
to remove the super-image step, and replace the image classifier with a video action
recognition network.
For the dense-sampling-based method, which is our future work and not imple-
mented, the general idea is to use dense sampling to initiate the feature memory,
which is computed by Transformer encoder, and sample different clips from video
in each epoch to update the encoder and feature memory itself, feature memory is
linked to video classification head to recognize the defect. This method which will



Technical Report of UrbanPipe Challenge 3

greatly save the memory and computational cost, and allows us to use a powerful
Transformer-based feature extractor without freezing its backbone or reducing the
spatial video resolution.

1.2 Model Capacity Improvement

Due to the large shift in the domain, both the self-attention-based model and the
convolutional-based model need to operate supervised learning based on strong
pretrained weights, especially for the weak-label training dataset, each model may
have its own direction on underfitting or overfitting. Therefore, how to combine mul-
tiple networks to maximize the benefits of model capacity is also one of the difficul-
ties of this challenge.
In response to this difficulty, we mainly compare the fitting capabilities of various
models on this task to determine the most suitable model for ensemble. Convolution-
based model mainly include ConvNeXt, NFNet, ECA ResNet, EfficientNet and TRes-
Net, self-attention-based model mainly include Swin-Transformer.

2 Method

2.1 Data Processing

First is data processing, including frame extraction, data distribution observation,
data multi-fold splitting and data augmentation. In terms of dataset composition,
none of the three solutions mentioned in this report use any extra datasets during
training.

Frame Extracting: Here we use CV2 to extract all frames in 9609 videos, the extracted
frame images retain the original resolution, and all frame images are assigned to each
folder according to the video they belong to.

Folder Spliting: Usually we need to divide the data into multiple folders so that all
samples can be learned in the model. Since this task is a multi-label classification
task, and the data has a very significant long-tailed distribution, in order to divide
the data set into 5 different folders, and try to ensure that the distribution of training
and validation samples in the folder basically conforms to the distribution of dataset,
we used the iterative stratification from scikit-multilearn library. Taking folder 0 as
an example, the distribution of the split training and validation sets is shown in the
figure.

Data Augmentation: In data augmentation, we mainly use horizontal flipping, we
have also experimented with other data augmentation methods such as RandAug,
AutoAug, and some common data augmentation methods such as vertical flipping,
random cropping, rotation, color shift, etc. In the experiments, these methods will
reduce our score, so we do not use these data augmentation methods.



4 J. Dong, B. Zhang, Z. Yu, C. Hu, S. Wang

Fig. 2. Distribution of folder 0 training and validation set

2.2 Frame-Based Method

Motivation: In the beginning, we tried to solve this problem using familiar image
classification network, defining the weak label of a video as the label of all frames in
the video, and training a simple multi-label image classifier.

Model: We used TResNet [7] for training model. TResNet performs great in many
multi-label classification tasks, mainly due to the ASL [1] used in the network. TRes-
Net also has a very high speed on training and inference. While ensuring the accu-
racy of the model, the number of parameters of the model is also moderate. For fast
implementation, we use TResNet.

Training and Validation Pipeline: First, we get all the previously extracted frame
images, for all the frame images of each video, assign the video labels to the frame
images. Then we split the dataset into 5 folders, generate the corresponding file list
and send it to the dataloader. Second, after the data preparation is completed, the
TResNet image classification network is used for training. After the model is trained
for 30 epochs, the frame-level predictions of the model for the validation dataset are
collected, and post-processing methods are used to convert the frame-level predic-
tions into video-level predictions for evaluation. After multiple rounds of training
and evaluation operations, the model with the best evaluation result is selected for
prediction on the test dataset.
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Post-Process: The post-processing stage here mainly refers to the process of con-
verting the frame-level predictions of TResNet into video-level predictions. Our post-
processing method is very simple, which is to average(or maximum and median) the
predictions of all frames in a video , and output it as the predictions of this video.
This method is proved to be simple and effective, but it lacks rationality, and the per-
formance is poor for some long videos.

Result: Using this simple method, we achieved a validation score of 55.2%, which is
a good start for us.

Shortage: This method assigns the labels of the video to all frames in this video,
this designed mapping is inaccurate, especially in long untrimmed videos. The net-
work cannot learn accurate, deterministic information, and the model capacity after
training may also be biased towards overfitting or underfitting.

2.3 Video-Based Method

Motivation: We need to design a more accurate mapping between assigned labels
and groundtruth. Using video classification network, we can extract clips of a spe-
cific length and pass them into the network with the ability to extract temporal fea-
ture and spatio feature, so as to learn useful features in all frames of each clip, and
improve the accuracy of mapping.

Model: We used Video Swin Transformer [5] as the model for video classification.
This model is a pure-transformer architecture for video recognition that is based on
spatiotemporal locality inductive bias. This model is adapted from the Swin Trans-
former for image recognition, and thus it could leverage the power of the strong
pre-trained image models. The proposed approach achieves state-of-the-art perfor-
mance on three widely-used benchmarks, Kinetics-400, Kinetics-600 and Something-
Something v2.

Training and Validation Pipeline: The process is based on the standard video ac-
tion classification network training process. First, collect all the previously extracted
frame images, sample the image using uniform sample method, and send them to
the dataloader. Second, it goes directly to the training and validation process of the
model, so this is a complete end-to-end network. Except for the data preparation
process, there is no other data preprocessing and postprocessing, the training pro-
cess is clean, easy to understand and reproducible.

Result: Using video classification network based on the Video Swin Transformer,
and using different Backbone for training, the mAP score on the validation set reached
69.15%. Compared with the method based on single-frame prediction, video-based
method boosted score by nearly 15%. Training details are shown in the Table 1.
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Table 1. Training details and result of Video Swin Transformer

Model Bacbone Params Lr Schd Pretrain Val mAP(%)

Video Swin
Transformer(ema)

Swin-B 88M
Onecycle
30E

Kinectic 600 69.153

Kinectic 400 69.424

SS V2 68.523

Shortage: This method can effectively extract temporal and spatio features, but for
this task, temporal features may not be critical, because we found that in the dat-
aloader of the video classifier, even if the order of all frames is disrupted, the trained
model even had a slight improvement compared to regular trained model. There-
fore, we infer that what is relatively important in this task is the ability to extract
spatio features. However, in the video classification network, the backbone for spa-
tio feature extracting lacks flexibility. As for the Video-Swin-Transformer, it cannot be
replaced by any other backbones except for Swin-Transformer, and there are fewer
pre-training weights to choose from, which makes it difficult to improve the model
capacity by ensembling multiple structure networks.

2.4 Super-image Method

Motivation: Following our previous assumptions, we abandoned the temporal part
of the action classification network and attempted to turn the problem into a pure
image classification problem. In this way, not only can the model be trained more
efficiently, but in terms of model capacity improvement, more different structured
models and more pre-trained models on different datasets can be choosed, which is
highly flexible.
Inspired by the mosaic data augmentation, we wondered whether it is possible to
convert the video into a grid image composed of frames through a similar processing
method, here we define this grid image as super-image.

Pre-Process: The pre-processing here refers to the process of converting several
frame images into a super-image. First, we obtain N samples from the video using
uniform sampling (the size of N is determined by the number of rows and columns
of the super-image. The N we use is 9, which means the super-image is a 3×3 grid).
Second, data augmentation is performed on each sampled image. Third, the aug-
mented images are collaged into a super-image according to the rows and columns
of super-image, and the input processing flow is completed.

Model: Since we transform the video classification task into a normal image classi-
fication task, there are more models to choose from. In the experiment, we selected
dozens of top-ranked models on ImageNet for testing. Among the models we tested,
there are several models with outstanding performance, such as: Convnext Base [6],
MLDecoder (TResNet XL) [8], NFNet F3, NFNet F6 [2], EfficientNet L2 [9].

zx
高亮
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Table 2. Training details and result of super-image method

Model Pretrain Params Input
Size

Super-Img
Grid

Data Aug Optim Lr Schd Val
mAP
(%)

Tresnet XL +
MLDecoder

ImageNet 21K
(Input Size 640)

78M 1334
(448*3)

3*3 Horizonal Flip
+ Tiles Shuffle

AdamW OneCycle
30e

67.19

ConvNeXt Base IN22Kft1K
(Input Size 384)

88M 1334
(448*3)

3*3 Horizonal Flip
+ Tiles Shuffle

AdamW OneCycle
30e

69.89

NFNET F3 ImageNet 1K
(Input Size 416)

254M 1334
(448*3)

3*3 Horizonal Flip
+ Tiles Shuffle

AdamW OneCycle
30e

71.41

NFNET F6 ImageNet 1K
(Input Size 576)

438M 1152
(384*3)

3*3 Horizonal Flip
+ Tiles Shuffle

AdamW OneCycle
30e

70.45

ECA ResNet 269d ImageNet 1K
(Input Size 352)

102M 1334
(448*3)

3*3 Horizonal Flip
+ Tiles Shuffle

AdamW OneCycle
30e

70.69

Swin Transformer
Large

ImageNet 1K
(Input Size 384)

196M 1334
(448*3)

3*3 Horizonal Flip
+ Tiles Shuffle

AdamW OneCycle
30e

71.11

EfficientNet L2 ImageNet 1K
(Input Size 800)

480M 1334
(448*3)

3*3 Horizonal Flip
+ Tiles Shuffle

AdamW OneCycle
30e

70.95

In the actual model selection, the model we choose usually has the following char-
acteristics: pre-trained on a large data set, excellent score on ImageNet, larger input
size, moderate amount of parameters, good generalization ability and fitting speed.

Training and Validation Pipeline: First, we need to extract frames from videos and
obtain several frame images using uniform sampling. Second, we will perform data
augmentation on the sampled frame images. Third, for each video, we collage the
augmented frame images to a super-image. Fourth, we send the super-images to the
image classification network through dataloader for training and validation. After
getting the model with the highest validation mAP, we use it to inference on test
dataset. Finally, we ensemble and post-process the predictions of multiple image
classification models to get our final score.

Result: As shown in the Table 2 are the best models we tested, as well as the pre-
trained models of each network, the parameters of the model, the input size, the
super-image parameters, the data augmentation method, the optimizer, and the lo-
cal validation score and leaderboard score, In order to ensure the effect of the later
ensemble, we try to choose more heterogeneous networks. At the same time, based
on these types of networks, we have conducted several ablation experiments on train-
ing strategies. Finally we fine-tuned the parameters of each network to ensure the
best performance.

Visualization Result: We visualized the response region of the network in the super-
image to verify the effectiveness of this method in figure 3 by Grad-Cam library. Here
we use ConvNeXt-Base as the base network to extract the feature map generated by
layer4 of the network for visualization. It can be seen from the visualization results
that the network’s response to the 16 types of defects is close to the real situation, and
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Fig. 3. Visualizations of super-image feature maps on ConvNeXt

the uniform sampling method can also accurately establish the mapping between
the assigned label and the groundtruth, most tiles have responses of defect.

Shortage: First of all, the Super-image method is relatively resource-consuming. The
minimum size of each super-image can reach 1152x1152. When the batchsize is 4,
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Fig. 4. Visualizations of super-image feature maps on ConvNeXt

it can easily occupy more than 20 GiB of GPU memory, further reducing the size
of super-image or the batchsize will seriously affect model performance, so we use
many strategies to save GPU memory, such as gradients checkpoint, mix precision
and gradients accumulating. Second, for specific defect category, such as SL, this
defect is more dynamic than any other defects, which is only visible in consecutive
frames. When using uniform sampling, due to large sampling interval, it is difficult
to recongize water flow and water droplets, which is why the performance of super-
image is relatively poor in this category, requiring us using more precise sampling
method.

2.5 Ensemble and Post-processing

After all the models achieved their best results, we started to ensemble the predic-
tions. We experimented with a variety of ensemble methods, and finally found that
the average ensemble and weight ensemble were the most effective. The process is,
for the 5 folder predictions from same model, we use average ensemble method. Af-
ter getting the predictions whose number is the same as the number of models, for
predictions from different models, we use weight ensemble method, the size of the
weight is LB score related. The ensemble detail are shown in the Figure 3.
After we get the final ensemble prediction, we need to post-process it. The post-
processing here refers to, for each prediction, if prob of ‘ZC’ above 0.9, set prob of ‘ZC’
to 1, set other prob of classes to 0. After post-processing, our validation score reaches
72.689%, and we use similar ensemble strategy when submitting leaderboard scores.

zx
高亮
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Table 3. Model ensemble result

Model Val mAP(%) Ensemble
Weight

Ensembled
Val mAP(%)
(post-processed)

Tresnet XL + MLDecoder 67.194 0.1

72.689

ConvNeXt Base 69.891 0.1

NFNET F3 71.405 0.15

NFNET F6 70.453 0

ECA ResNet 269d 70.689 0.15

Swin Transformer Large 71.106 0.2

EfficientNet L2 70.945 0.2

Video Swin Transformer(ema) 69.424 0.1

3 Experiments

We summarize some tricks used in the competition, but it should be noted that
boosted value only represents the boosted score of some models, not all of mod-
els. Because we use a variety of models, we cannot guarantee the boosted score is
completely accurate with the table on each model, and part of the boosted score is
an estimate.

Table 4. Boosting tricks

Level Type Description Boosted(%)

Data

Size Large input size(448) 1

Augment
Horizonal flip 0.6

Tiles shuffle 1

Sample Uniform sample 2.2

Model

Learning Strategy

Long warmup epoch 0.9

Big learning rate 1.8

Onecycle scheduler 0.5

Batch Strategy

Accumulate gradients

2Mixed precision

Gradient checkpoint

Other Ema models 5

Ensemble 5 folders ensemble, mix folder ensemble 1.8

Postprocess For each prediction, if prob of ‘ZC’ above 0.9, set
prob of ‘ZC’ to 1, set other prob of classes to 0.

0.12
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Table 5. Lowering tricks

Level Type Description Boosted(%)

Data

Augment

Randaug -1

Autoaug -0.6

Rotate, vertical flip, color jitter -1.6

Sample
Sequence sample -2.2

Larger super-image grid(4x4,
5x5)

-1

Model

Weakly
Supervised
Model

SimCLR + TransMIL -19.4 (Local Val)

SimCLR + MLDecoder -19.7 (Local Val)

MAE + TransMIL -22 (Local Val)

MAE + MLDecoder -25 (Local Val)

TTA

Horizonal flip, Vertical flip -3

Resample video -0.3

Grid shuffle -0.5

Ensemble Ensemble by max mAP of each class -1.6

Postprocess Set threshold for each class -1.3

3.1 Boosting Tricks

First is the tricks that boosted the score. At the data level, a larger input size is more
effective. At the data augmentation level, only horizontal flipping and super-image
tiles disruption can improve the score. In terms of sampling strategy, the most ef-
fective method is uniform sampling. At the model level, we have proved that longer
warmup epoch, larger learning rate, and the use of onecycle scheduler are all effec-
tive. Due to the large input size of the super-image, in order to increase the actual
batch size, we also used some tricks like gradient accumulation, mixed precision,
gradient checkpoint. We also used exponential moving average on model weights,
which can greatly boost the score of our model. On the ensemble strategy, only the
average ensemble and the weighted ensemble are proved to be stable and effec-
tive. Finally the post-processing trick mentioned above can also slightly improve the
score.

3.2 Other Tricks

We also found some strategies that will lower our score, such as heavier data augmen-
tation, using sequence sampling, using super-images with larger rows and columns,
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using TTA at inference, etc.
We also use some weakly supervised learning methods, trying to convert this task
into a weakly supervised multi-instance learning problem. The main process is as
follows: First, use MAE, SimCLR and other self-supervised networks to pre-train on
the dataset. Second, use pre-trained self-supervised networks to extract features from
images. Third, use the extracted features as the input of TransMIL and MLdecoder for
training and validation. After such process the final score can only reach our frame-
based methods.

4 Conclusion and Future Work

Conclusion: Frame-based methods inevitably assign wrong labels to frames, thus
causing the model to learn data with large deviation. This flawed mapping design
proves to be inappropriate for the task. Method based on video classification are rela-
tively general, but the lack of flexibility makes it difficult to try to use more backbones
to increase model capacity. The method is also less efficient in training due to learn-
ing more complex temporal information, and temporal information also proved to
be less important in this task.
It is also possible to transform this task into a weakly supervised multi-instance learn-
ing task, but pre-training of feature extractors such as MAE and SimCLR is a critical
step, and they are also time-consuming. If the feature extractor can be pretrained
well on the dataset of similar domain, the score can definitely be improved a lot.
The super-image-based method is relatively effective in this task. The task is simpli-
fied to a simple image classification task. The network only needs to learn the spatio
information in the super-image, and can replace the multi-structure backbone and
multi-domain pretrained weights at any time, which is of great significance in im-
proving the model capacity. And the mapping between labels and groundtruth will
be more accurate as the super-image size increases, but obviously its size is limited
by hardware.

Future Work: As shown in figure 1, The method based on dense sampling is one
of our future work. Both video-based and super-image-based methods which uses
uniform sampling are extremely susceptible to hardware limitations, the number of
samples cannot be too large. For the dense sampling method, using feature mem-
ory, the encoder in each epoch only updates the features of the clip sampled in a
single video, and the updated encoder returns to updates the feature memory. This
method greatly reduces the computational cost, and as epoch increases, all clips in
the video will be visited and updated. In feature extraction, since the frame interval
of dense sampling is very short, it will theoretically have better performance than
uniform sampling methods for defects with temporal information such as SL. Even
the defects that appear in the video for a very short time, it can be well covered by
repeated dense sampling.

zx
高亮
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A Models Training and Validation Result

Table 6. Model Performance on Folder, Categories and Validation Set

MODELS Folder
Best
mAP(%)

Categories AP(%) Avg
mAP(%)0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

MLDecoder
(TResNet-
XL,
ImageNet
21K)

0 66.98 100.00 82.19 70.56 60.60 83.80 81.48 56.83 71.71 63.60 67.72 75.89 76.84 54.70 12.53 53.91 48.25 78.00

67.194

1 65.02 99.86 79.76 64.84 57.31 83.27 80.74 52.01 81.73 63.81 58.11 76.57 70.22 60.47 35.90 36.58 43.55 60.66

2 69.84 99.99 80.09 74.37 60.37 84.59 86.27 57.78 74.92 61.29 71.01 67.13 76.07 65.94 51.20 53.15 38.87 84.31

3 67.97 100.00 78.37 69.58 57.40 82.08 77.91 57.03 75.88 59.23 73.23 64.80 85.37 66.79 48.60 42.83 46.45 69.95

4 66.16 100.00 81.16 71.38 64.12 78.85 78.74 65.89 83.32 68.56 51.00 65.07 62.07 85.46 34.39 40.43 30.27 64.07

ConvNeXt-
Base
(IN22Kft1K)

0 69.48 99.98 81.58 72.17 61.15 81.00 78.06 62.89 78.53 72.74 69.68 68.55 89.75 63.06 18.59 57.64 44.06 81.63

69.891

1 67.80 99.97 80.18 64.82 63.03 80.54 91.67 58.94 84.57 76.43 55.97 70.96 75.13 69.38 38.25 42.36 37.28 63.15

2 72.19 99.99 81.72 74.12 65.18 84.93 85.40 65.41 82.68 70.19 70.50 63.63 73.64 77.24 55.13 51.32 40.02 86.11

3 71.58 99.98 80.87 70.23 61.50 80.65 82.88 64.85 80.64 67.61 74.56 61.99 84.81 68.83 43.29 61.24 53.88 78.98

4 68.42 99.99 80.33 69.10 71.20 80.64 82.80 63.25 83.70 74.91 47.17 64.37 61.92 89.03 41.18 46.42 39.70 67.36

NFNet F3
(ImageNet
1K)

0 71.09 99.95 83.59 74.61 62.32 80.77 81.48 71.11 80.44 78.35 72.78 71.80 90.28 71.13 20.86 38.48 49.11 81.56

71.405

1 69.93 99.99 81.96 66.74 66.77 83.40 92.06 67.11 85.27 74.33 58.04 77.93 75.75 72.32 33.27 48.39 43.24 62.17

2 74.95 99.99 84.53 75.69 68.22 86.92 88.12 65.78 81.15 75.54 73.33 68.82 83.07 85.82 47.26 63.17 41.16 85.50

3 71.79 100.00 80.17 71.19 59.30 82.53 83.57 65.33 83.31 70.29 79.16 61.84 82.09 69.25 53.03 59.81 46.46 73.11

4 69.27 100.00 83.18 72.83 69.08 81.72 82.53 70.45 82.34 73.44 50.36 63.52 64.19 87.71 46.65 42.03 40.41 67.17

NFNet F6
(ImageNet
1K)

0 69.51 99.98 82.65 74.47 63.57 81.89 78.18 65.60 79.79 77.31 71.72 67.78 90.10 65.23 16.38 40.80 47.57 78.68

70.453

1 69.00 99.91 81.59 65.47 65.41 82.82 91.10 59.38 85.78 76.25 58.62 77.92 77.47 71.32 36.71 39.78 42.57 60.92

2 72.06 99.95 81.38 75.64 63.10 86.91 86.92 66.76 82.23 72.13 71.93 67.27 76.99 71.86 46.52 51.55 36.21 87.65

3 71.55 99.94 81.42 71.30 62.41 83.17 82.59 65.12 83.86 72.37 73.77 59.99 84.25 75.55 46.46 52.07 48.77 73.33

4 70.15 100.00 84.67 73.75 69.08 83.76 84.89 66.99 84.80 74.60 56.90 63.30 67.29 90.16 44.90 45.24 37.67 64.48

Video Swin
Trans-
former
(ema)

0 68.82 100.00 83.24 69.63 60.53 82.50 82.44 63.93 78.46 76.07 71.36 69.94 87.09 62.63 19.90 35.57 43.69 83.02

69.424

1 67.55 99.99 80.72 61.48 63.10 79.14 92.24 52.02 83.34 79.24 61.37 73.64 70.41 66.29 40.42 40.08 39.59 65.23

2 71.31 99.94 82.32 73.99 63.30 84.15 88.66 59.03 79.66 72.40 70.19 68.78 74.00 73.34 40.29 54.63 39.83 87.83

3 70.57 99.99 79.45 69.49 58.39 83.61 81.61 59.95 79.31 68.00 76.70 69.48 80.30 69.74 48.07 49.51 55.80 70.21

4 68.87 99.99 81.60 69.50 71.32 80.64 81.85 67.82 79.26 73.95 52.53 65.22 65.09 84.62 52.68 36.00 40.14 68.60

EfficientNet
L2

0 70.62 99.92 83.05 72.25 61.17 79.90 80.23 61.92 77.21 77.87 76.09 69.36 93.55 64.55 32.06 41.52 51.03 78.82

70.945

1 69.76 100.00 81.07 67.45 63.45 80.53 89.51 65.84 87.65 79.04 61.33 76.40 74.15 72.48 39.68 39.28 45.76 62.30

2 73.68 99.98 82.84 76.72 62.30 84.87 90.52 67.48 83.07 73.12 70.73 69.06 80.81 76.16 49.23 58.23 39.12 88.37

3 70.50 99.88 79.56 70.76 58.05 79.71 79.86 66.21 82.50 67.72 74.80 59.68 84.82 65.90 55.81 46.60 53.07 73.58

4 70.17 100.00 83.28 70.83 70.93 81.85 81.85 68.98 85.05 74.90 59.53 60.85 69.75 86.44 49.71 39.49 44.80 64.59

ECA
ResNet
269d

0 70.26 100.00 82.41 73.21 58.11 84.24 82.64 61.39 80.87 74.45 68.43 76.16 90.01 64.97 18.81 50.53 46.27 81.92

70.69

1 69.23 100.00 81.37 66.10 60.20 84.71 90.86 60.24 86.83 75.92 64.82 79.79 71.98 70.72 29.89 46.29 48.87 58.36

2 73.22 100.00 83.12 74.11 64.20 85.68 87.71 65.29 81.88 71.86 72.94 67.91 76.62 75.68 50.41 61.26 40.06 86.02

3 71.14 100.00 80.48 70.29 60.56 82.50 85.32 61.84 82.84 66.20 75.70 64.31 83.86 70.09 53.22 52.58 50.77 68.87

4 69.59 100.00 81.37 71.84 64.64 80.75 81.67 69.60 85.26 72.63 57.08 68.12 59.17 92.83 49.68 45.89 35.02 67.47


