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Figure 1: Overview of our method. Given an untrimmed video, Faster-TAD can generate proposals and simultaneously
(1) refine the boundary and (2) classify the proposal in a context-adaptive way. We construct our Faster-TAD with feature
sequences extracted from raw video as inputs.

1. Method
In the task of temporal action localization of Fineaction

dataset, we propose to locate the temporal boundaries of
each action and predict action class in untrimmed videos.
We first apply VideoSwinTransformer [1] as feature extrac-
tor to extract different features. Then we apply a unified
network following Faster-TAD[2] to simultaneously obtain
proposals and semantic labels. Last, we ensemble the re-
sults of different temporal action detection models which
complement each other. Faster-TAD simplifies the pipeline
of TAD and gets remarkable performance. Also, to take into
account both short-term and long-term temporal instances,
we introduce a multi-size sliding window strategy. Besides,
We add “negative sample windows” which without action
instances to the training set to reduce false positives.

1.1. Feature Engineering

With detailed analysis of Fineaction dataset, we recog-
nize that this dataset includes more fine-grained actions than
other public datasets like Kinetics-700, HACS Clips and
ActivityNet-1.3, and a lot of action durations are less than

1.2-seconds. Considering this fine-grainedness, we con-
struct two features, auxiliary feature and temporal boundary
feature, which respectively focus on the action duration and
the beginning and end of the action. For auxiliary feature,
we train the model with 2-seconds clips and expand to two
seconds from the center point for the actions shorter than
1.2s. Besides, we add three informative public datasets for
joint training with fineaction: Kinetics-700, HACS Clips
and ActivityNet-1.3 datasets. For temporal boundary fea-
tures, we just choose the actions longer than 1.2s in order
to better distinguish the training data at the start and end.
The details are shown in the figure 2. To better make use of
the background information of Fineaction, we set the back-
ground of each class as a supplementary class in training,
and that change the duration number of categories in Fine-
action from 106 to 212, and change that of start-end from
106 to 318.

We train two VideoSwinTransformer models with two
clips to extract two features with window size=64 and
stride=32. The results of each atomic classifier are shown
in the Table 1.



Figure 2: The data construction of the atomic classifier. Based on the original dataset, two different construction methods of
atomic actions result in the generation of two different features, which are sensitive to temporal boundary in different degrees.
Action segments with different colors present different annotated label classes.

Table 1: Action classification results on validation
set of Fineaction dataset, measured by Accuracy(%).
Auxiliary style stands for the training data with back-
ground classes. Temporal boundary style stands for the
training data supplemented with start-end classes.

.
Model Train Data Top1 ACC Top5 ACC
Swin Auxiliary style 60.87 90.23
Swin Temporal boundary style 49.73 90.45

1.2. Temporal Action Detection

1.2.1 Multi-Size Sliding Windows

FineAction[3] is a large-scale and fine-grained video
dataset, containing 103K temporal instances of 106 action
categories. We analyze the training and validation set, ob-
serving that the temporal duration is widely distributed,
ranging from 0.5s to 400s. Although 70% of the instances
fall within 3s, instances with longer duration are still a non-
negligible component for TAL task. To take into account
both short-term and long-term temporal instances, we in-
troduce a multi-size sliding window strategy in the prepro-
cessing of video features and train the model on these fea-
tures separately. We set 4 different window sizes, spanning
from 5s to 160s, with stride to be half of the corresponding
window size. The final proposals from several models are
integrated via the post-processing.

The compatibility of single window size to temporal
duration is restricted, and instances with too long or too
short duration will hinder feature learning. Thus, we em-
ploy double-sided thresholds to remedy this deficiency. The
higher threshold excludes instances in annotations whose
duration is longer than the window size. Conversely, the

lower threshold filters out instances that are too short rela-
tive to the window size, set to be one tenth of the window
size smaller one level than the sliding window. This double-
sided criteria effectively enhances data centralization and
avoids data omission. Ground truth for each window size
follows the same filtering criteria at the video level. In ad-
dition, fake instances are synthesized manually to expand
the training data scale. We randomly selected clip features
without any instances, and covered part of them with in-
stance features selected randomly from the same video. The
ratio of fake to real in the training set is set 1:1. Finally, 4
sets of clip features are generated, and resized to 100 along
the temporal dimension for subsequent prediction.

1.2.2 Temporal Proposal Generation

We apply a Faster-RCNN like network in this temporal
action detection task, dubbed Faster-TAD[2]. By jointing
temporal proposal generation and action classification with
multi-task loss and shared features, Faster-TAD simplifies
the pipeline of TAD.

As shown in figure 1, we construct our Faster-TAD with
feature sequences extracted from raw video as inputs by
VideoSwinTransformer[1] Extractor. We process the fea-
ture sequences with a base module to extract shared fea-
tures, which consists of a CNN Layer, a Relu Layer, and a
GCNeXt[4] Block. We then exert a Proposal Generation
Mechanism to obtain most credible K coarse proposals,
where K is 120. Proposals and shared features are further
utilized to get more accurate boundaries by Boundary Re-
gression Refinement Module[5]. At the same time, shared
features and proposals are employed to get the semantic
labels of action instances with Context-Adaptive Proposal
Module.
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Table 2: Action detection results on our new validation set of FineAction, measured by AUC and the average mAP(%).
We construct new training and validation sets, by adding 4/5 of the original validation data to the training set, and tak-
ing the remaining as the validation set. CEL stands for cross entropy loss. NS Window stands for negative sample
windows.TB style stands for Temporal boundary style.

Method Feature Class-Loss Window Size NS Window AR@20 AUC
Faster-TAD TB style CEL+Triplet 5 ✓ 23.06 29.89
Faster-TAD TB style CEL+Triplet 10 ✓ 27.32 33.85
Faster-TAD TB style CEL 40 ✓ 68.11 71.53
Faster-TAD TB style CEL 160 ✓ 75.22 76.51
Faster-TAD Auxiliary style+TB style CEL+Triplet 5 ✓ 21.71 29.32
Faster-TAD Auxiliary style+TB style CEL+Triplet 10 ✓ 25.43 32.49
Faster-TAD Auxiliary style+TB style CEL 40 ✓ 65.67 69.12
Faster-TAD Auxiliary style+TB style CEL 160 ✓ 73.12 74.72
Faster-TAD TB style CEL 5 × 17.54 25.61
Faster-TAD TB style CEL 10 × 21.36 28.71
Faster-TAD TB style CEL 40 × 55.14 60.13
Faster-TAD TB style CEL 160 × 47.48 50.54
Ensemble Video Level Results all windows mAP 22.62 29.67 36.95

We make some improvements to tackle the challenges
in temporal action detection. Faster-TAD includes Context-
Adaptive Proposal Module to adaptively learn the semantic
information of proposals by introducing attention mecha-
nism across proposals to whole video and considering con-
text as proximity-category proposals. Then the Fake Pro-
posal based on the ground truth boundary with different
offsets improves the Boundary Regression Module. Also,
we found diverse features representation can complement
each other, like “Auxiliary style” and “Temporal boundary
style” in this paper. We employ Auxiliary-Features Block
to adapt to the two streams input, and obtains remarkable
performance.

The FineAction dataset contains many raw videos with
diverse duration, which have lots of action instances within
2 seconds. This results in many sliding windows without
any action instances, named as “negative sample windows”
in this paper. To reduce false positives, we add “negative
sample windows” to the training set, and set their confi-
dence map label all to zero. This strategy greatly improves
the AUC (Area under the ROC Curve) of the results.

1.2.3 Proposal Classification

In order to get clear classification boundaries, we propose
to involve metric learning loss functions for explicit con-
straints of embedded feature distributions. In addition to
the commonly utilized cross entropy loss, we adopt a metric
learning loss function: triplet loss [6]. In order to explicitly
constrain the similarity relationships between positive and
negative sample pairs, during the training process, a mini-
batch is grouped with P unique categories, each with K

samples. As a sample may contain more than 1 category,
only the first is taken into consideration at the batch sam-
pling stage. Metric learning losses aim to form compact
clusters for each category.

For an anchor sample in the mini-batch as xi, whose sim-
ilarity to positive and negative samples as sip and sin, the
triplet loss [6] can be formulated with:

Ltr =
[
sin − sip +m

]
+
, (1)

where m represents the margin between clusters, and []+
stands for max(·, 0). Triplet loss directly pulls close sam-
ples of the same category and pushes away those of different
categories.

1.3. Ensemble

In the Chapter 1.1 mentioned before, we can generate
discriminate features for temporal action detection. In this
section, we synthesize the proposal classification results to
form the final classification results, and apply soft-NMS [7]
to the proposal localization results with different thresholds
for different category. Besides, Boundary-Matching con-
fidence map mentioned in BSN[8] enumerates all possible
combination of temporal locations, bringing promotion in
both efficiency and effectiveness.

2. Experiment

We train our TAD model in a single network, with batch
size of 64 on 8 gpus. The learning rate is 6 × 10−4 for
the first 3 epochs, and is reduced by 10 in epoch 3 and 7.
We train the model with total 10 epochs. In inference, we
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apply Soft-NMS[7] for post-processing, and select the top-
M prediction for final evaluation. M is 120.

We construct new training and validation sets, by adding
4/5 of the original validation data to the training set, and tak-
ing the remaining as the validation set. The results of TAD
on the val dataset are shown in Table 2, which measured by
AUC and the average mAP(%) as ActivityNet-1.3 [9].
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