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Abstract

This technical report describes our method for the ECCV
DeeperAction Challenge - MultiSports track. The proposed
network is a bi-modal framework comprising RGB and pose
streams. Each of them separately models person, object,
and hand interactions. Within each sub-network, an Intra-
Modality Aggregation module (IMA) is introduced that se-
lectively merges individual interaction units. The result-
ing features from each modality are then aggregated using
an Attentive Fusion Mechanism (AFM). Finally, we extract
cues from the temporal context to better classify the occur-
ring actions using cached memory.

1. Method
Our Holistic Interaction Transformer (HIT) network is

concurrently composed of an RGB and a pose sub-network.
Each aims to learn persons’ interactions with their sur-
roundings (space) by focusing on the key entities that drive
most of our actions (e.g., objects, pose, hands). After fus-
ing the two sub-networks’ outputs, we further model how
actions evolve in time by looking at cached features from
the past and future.

1.1. Overall Framework

Given an input video Vin ∈ RC×T×H×W we extract
video features Vb ∈ RC×T×H×W by applying a 3D video
backbone. Afterward, using ROIAlign, we crop person fea-
tures P , object features O, and hands features H from the
video. We also keep a cache of memory features which is
denoted as M = [t − S, ..., t − 1, t + 1, ..., t + S], where
2S is the temporal window. Parallelly, we use a pose model
to extract person keypoints K from each keyframe of the
dataset. Further, the RGB and pose sub-networks compute
the RGB feature Frgb and pose feature Fpose, respectively.
These features are fused and subsequently used as anchors
for learning global context information to obtain Fcls. Fi-
nally, our network outputs ŷ = g(Fcls), where g is the clas-
sification head. The overall framework is shown in Fig. 1.

Figure 1. Overview of our framework. On top of our RGB
stream is a 3D CNN backbone which we use to extract video fea-
tures. Our pose encoder is a spatial transformer model. We com-
pute rich local information from both sub-networks using person,
hands, and object features. Then, we combine the learned features
using an attentive fusion module before modeling their interaction
with the global context.

1.2. Entity Selection

HIT consists of two mirroring modalities with distinct
modules designed to learn different types of interactions.
Human actions are largely based on their pose, hand move-
ments (and pose), and interaction with other entities in the
frame. Based on these observations, we select human poses
and hands bounding boxes as entities for our model, along
with object and person bounding boxes. We use Detec-
tron [4] for human pose detection and create a bounding
box encircling the location of the person’s hands. Follow-
ing the state-of-the-art methods, [17], [15], [13], we use
Faster-RCNN [14] to compute object bounding box pro-
posals. We use the person bounding boxes from https:
//github.com/MCG-NJU/MultiSports at infer-
ence time. The video feature extractor is a 3D CNN back-
bone network [3], and the pose encoder is a lightweight spa-
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Figure 2. Per-class frame AP results. Our per-class frame AP score follows the long-tailed distribution pattern.

tial transformer inspired by [19]. We apply ROIAlign [5] to
trim the video features and extract person and local context
features (hands and objects).

1.3. The RGB Branch

The RGB branch comprises three main components, as
shown in Figure 1. Each performs a series of operations
to learn specific information concerning the target person.
The person interaction module learns the interaction be-
tween persons in the current frame (or self-interaction when
the frame contains only one subject). The object and hands
interaction modules model person-object and person-hands
interaction, respectively. An illustration of the interaction
module is shown in Figure 1 (top-right corner). At the
heart of each interaction unit is a cross-attention compu-
tation where the query is the target person (or the output of
the previous unit), and the key and value are derived from
the objects, or the hands features, depending on which mod-
ule we are at. The following equations summarize the RGB
branch’s flow.

Frgb = (A(P) → zr → A(O) → zr → A(H) → zr)

A(∗) = softmax(
wq(P̃ )× wk(∗)√

dr
)× wv(∗)

zr =
∑
b

A(b)× softmax(θb),

(1)

where b ∈ (P̃ ,O,H,M), dr represents the channel dimen-
sion of the RGB features, wq , wk and wv project their inputs
into query, key and value, respectively. Note that A(∗) is the
cross-attention mechanism. It only takes person features as
input when computing person interaction A(P). However,
for hand interaction (objects interaction), it takes two sets
of input: the output of zr, which serves as query (denoted

as P̃ ), and the hands features (object features) from which
we obtain the key and values.

The intra-modality aggregation component, zr is the
weighted sum of all interaction modules, including the tem-
poral interaction module TI . zr is essential for two main
reasons. First, it allows the network to aggregate as much
information as possible, efficiently. Secondly, the learnable
parameter θ helps filter the different sets of features, hand-
picking the best each of them has to offer while discarding
noisy and unimportant information.

1.4. The Pose Branch

The pose model is similar to its RGB counterpart and
reuses most of its outputs. We first extract the pose features
K′ by using a light transformer encoder f inspired by [19].

K′ = f(K) (2)

Then we compute Fpose by mirroring the different con-
stituents of the RGB modality. Here, P ′, O′, and H′ are
the corresponding outputs of A(P), A(O), and, A(H).

Fpose = (A(K′,P ′) → zp → A(O′) → zp → A(H′) → zp)

A(K′,P ′) = softmax(
wq(K′)× wk(P ′)√

dp
)× wv(P ′)

(3)
where A(K′,P ′) computes the cross-attention between the
pose features K′ and the enhanced person interaction fea-
tures P ′. Such a cross-modal blend enforces the pose fea-
tures by focusing on the key corresponding attributes of the
RGB features. The other components, A(O′) and A(H′)
take a linear projection of zp as query while their key-value
pairs stem from A(O) and A(H). zp is the intra-modality
aggregation component for the pose model. Similar to zr,
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it filters and aggregates information from each interaction
module.

1.5. The Attentive Fusion Module (AFM)

At some point in the network, the RGB and pose streams
need to be combined into one set of features before being
fed to the action classifier. For this purpose, we propose
an Attentive Fusion Module that applies channel-wise con-
catenation of the two feature sets followed by self-attention
for feature refinement.

Ffused = Θfused(SelfAttention(Frgb, Fpose)) (4)

1.6. Temporal Interaction Unit

Following the fusion module is a temporal interaction
block (TI). Human actions happen in a continuum; there-
fore, long-term context is essential to understanding ac-
tions. Along with Ffused, this modules receives com-
pressed memory data M with length 2S. Inspired by [17],
the memory cache contains the person features extracted by
the video backbone. TI is another cross-attention module
where Ffused is the query and two different projections of
the memory M form the key-value pair.

Fcls = TI(Ffused,M) (5)

1.7. Implementation Details

Dataset: The MultiSports dataset [9] contains 66
fine-grained action categories from four different sports
spanning more than 3200 video clips with 37701 action
instances and 902k bounding boxes. Actions are anno-
tated at 25 FPS, and each video clip lasts around 22 seconds.

Backbone Network. We use SlowFast [3] R101 instantia-
tion pre-trained on the Kinetics-700 dataset [1].

Person and Object Detector: We extract keyframes
from each video in the dataset and use detected person
bounding boxes from https://github.com/MCG-
NJU/MultiSports for inference. According to the
authors, these boxes are generated by the person detector
of Faster R-CNN with a ResNeXt-101-FPN. As object
detector, we employ Faster-RCNN [14] with ResNet-
50-FPN [11, 18] backbone. The model is pretrained on
ImageNet [2], and fine-tuned on MSCOCO [12].

Keypoints Detection and Processing: For keypoints
detection, we adopt a pose model from Detectron [4].
The authors use a Resnet-50-FPN backbone pretrained
on ImageNet for object detection and fine-tuned on
MSCOCO keypoints using precomputed RPN [14] pro-
posals. Each keyframe from the target dataset is passed
through the model, which outputs 17 keypoints for each

detected person, corresponding to the COCO format.
We further post-process the detected pose coordinates,
so they match the groundtruth person bounding boxes
(during training) and the detected bounding boxes from
https://github.com/MCG-NJU/MultiSports
(during evaluation and testing). For person hands location,
we are only interested in the keypoints referring to the
person’s wrists; therefore, we make a bounding box out
of these two keypoints to highlight the person’s hands and
everything in between.

Training and Evaluation: The input videos are sampled
64 frames per clip, with α = 8 and τ = 4. During training,
random jitter augmentation is applied to the ground-truth
human bounding boxes. For object boxes, we use the
ones with detection score ≥ 0.25 and whose IoU with
any person bounding box in the same frame is positive.
This is to ensure that only the objects with relatively high
confidence scores and those with which humans directly
interact are included in our sample. We use a memory span
of S = 30 for Temporal Interaction. The network is trained
for 150k iteration with the first 2000 iterations serving
as linear warm-up. The starting learning rate of 0.0004
is reduced by a factor of 10 at iterations 90k and 110k.
We use SGD as optimizer and a batch size of 16 to train
the model on 8 GPUs. At inference/test time, we predict
action labels for human bounding boxes provided by
https://github.com/MCG-NJU/MultiSports
with a confidence threshold of 0.8. Softmax focal loss is
used as activation function for the classifier. Our model
outputs frame detection results and we create action tubes
using the format provided by ACT [7].

1.8. Ablation Study

Since the MultiSports dataset is heavy, we first perform
ablation experiments on the J-HMDB dataset [6] to con-
firm the effectiveness of our model and its constituents,
then transport the best configuration to MultiSports. All ab-
lations are performed using the SlowFast-Resnet50 video
backbone. We use frame mAP with an IoU threshold of 0.5
as evaluation metric.
Network Depth: Two layers of our network are enough to
learn valuable features conducing to accurate action detec-
tion. As shown in Table 1b, a two-layer setting improves the
mAP by more than 4% compared to having just one, while
adding a third induces overfitting.
Attentive Fusion Module (AFM): We used an Atten-
tive Fusion Mechanism (AFM) to combine features from
the two modalities. Equipped with self-attention, it helps
smoothen the fusion process between different modalities.
We corroborate this choice by comparing it with Sum,
Concat, WeightedSum, and Average.

3

https://github.com/MCG-NJU/MultiSports
https://github.com/MCG-NJU/MultiSports
https://github.com/MCG-NJU/MultiSports
https://github.com/MCG-NJU/MultiSports


Bi-modal fusion mAP

Sum 78.60
Concat 78.77
WeightedSum 80.21
Average 81.35
AFM 83.81
(a) Bi-modal fusion methods

Depth mAP

1 layer 79.21
2 layers 83.81
3 layers 81.54

(b) Network Depth

mAP

After TI 82.16
Before TI 83.81
(c) Late versus early
fusion

mAP

w/o IMA 79.80
w/ IMA 83.81
(d) Importance of
IMA

mAP

Backbone 58.85
Backbone + AIA [17] 77.25
Backbone + Pose Encoder 80.44
Backbone + Ours 83.81

(e) Interaction modeling methods

Table 1. Ablation Study on J-HMDB We use a SlowFast-Resnet50 as video backbone and report our results in mAP. For Backbone +
Encoder we directly use our AFM to fuse the pose and RGB features extracted from the pose encoder and video backbone.

The Sum fusion, refers to element-wise addition of the
features. The Concat fusion stands for channel-wise con-
catenation of the RGB and pose features. WeightedSum
yields a marginally higher mAP than the two previous fu-
sion methods. However, it does not challenge our AFM. A
better fusion method is the Average fusion, which takes the
average of the RGB and pose streams. As shown in table 1a,
our AFM works better than the other approaches by virtue
of its ability to enhance the combined features.
Late vs. Early Fusion: Late/early fusion refers to whether
we fuse the two modalities before or after the Temporal In-
teraction module. Table 1c reports our results trying both
structures. As we expected, temporal interaction works best
when it’s done on the full feature map, instead of features
from each modality independently. It should also be more
efficient since we only need one temporal interaction unit.
The Intra-Modality Aggragator (IMA): In section 1, we
describe the use of the intra-modality component zr for the
RGB modality and zp for the pose model. We notice that
better feature selection is achieved when the network learns
by itself how to do that. As shown in Table 1d, without the
intra-modality aggregation module, important information
would be wasted, holding back the model’s performance.
Interaction Modeling methods: To validate our interac-
tion modeling scheme, we re-implement another interaction
method found in the literature on top of the video backbone
network. Table 1e contains results obtained with the bare
backbone, with the backbone and our pose encoder, and the
implementation of AIA [17]. For the Backbone + Pose En-
coder framework, we directly fuse the outputs of the video
backbone and the pose encoder. The table shows that our
pose encoder is stronger than AIA, which aggregates per-
son, object, and memory interaction.

2. Main Results

In Table 2, we report our results on the validation set
of the MultiSports dataset. Our method outperforms other
methods in terms of frame mAP with an IoU threshold of
0.5, and video mAP when the spatio-temporal tube thresh-
old is 0.2. Note that these numbers we compare ours to are

taken from the MultiSports paper [9]. The per-class frame
AP is illustrated in Fig. 2.

Model f@0.5 v@0.2 v@0.5

ROAD [16] 3.9 0.0 0.0
YOWO [8] 9.2 10.7 0.8
MOC [10] 25.2 12.8 0.6
MultiSports [9] 27.7 24.1 9.6

Ours 33.3 27.8 8.8

Table 2. Comparison with the State-of-the-art.

(a) Aerobic-related sports are easy to
spot, especially when there is no

overlap between the subjects.

(b) Basketball-related classes, on the
other hand, are more challenging due

to frequent other-persons-induced
occlusion.

Figure 3. A correctly classified image on the left and an incorrectly
classified one on the right.

2.1. Final Submission

We train our model on the training and validation data
combined for the results submitted to the challenge’s test
server. The results are obtained with a single model (the
one we describe throughout this report). No ensemble of
models was used. Furthermore, our framework ended the
development stage of the challenge at the top of the leader-
board with a v@0.10:0.90 score of 13.1. The f@0.5, v@0.2,
and v@0.5 were 35.4, 28.9, and 9.6, respectively.

It is to be noted that we did not use additional data to
improve our results on MultiSports. J-HMDB was used in-
dependently and only for ablation purposes.
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[8] Okan Köpüklü, Xiangyu Wei, and Gerhard Rigoll. You
only watch once: A unified cnn architecture for real-
time spatiotemporal action localization. arXiv preprint
arXiv:1911.06644, 2019. 4

[9] Yixuan Li, Lei Chen, Runyu He, Zhenzhi Wang, Gang-
shan Wu, and Limin Wang. Multisports: A multi-person
video dataset of spatio-temporally localized sports actions.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 13536–13545, 2021. 3, 4

[10] Yixuan Li, Zixu Wang, Limin Wang, and Gangshan Wu. Ac-
tions as moving points. In European Conference on Com-
puter Vision, pages 68–84. Springer, 2020. 4

[11] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,
Bharath Hariharan, and Serge Belongie. Feature pyra-
mid networks for object detection. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 2117–2125, 2017. 3

[12] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In

European conference on computer vision, pages 740–755.
Springer, 2014. 3

[13] Junting Pan, Siyu Chen, Mike Zheng Shou, Yu Liu, Jing
Shao, and Hongsheng Li. Actor-context-actor relation net-
work for spatio-temporal action localization. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 464–474, 2021. 1

[14] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. Advances in neural information process-
ing systems, 28:91–99, 2015. 1, 3

[15] Hongje Seong, Junhyuk Hyun, and Euntai Kim. Video mul-
titask transformer network. In Proceedings of the IEEE/CVF
International Conference on Computer Vision Workshops,
pages 0–0, 2019. 1

[16] Gurkirt Singh, Suman Saha, Michael Sapienza, Philip HS
Torr, and Fabio Cuzzolin. Online real-time multiple spa-
tiotemporal action localisation and prediction. In Proceed-
ings of the IEEE International Conference on Computer Vi-
sion, pages 3637–3646, 2017. 4

[17] Jiajun Tang, Jin Xia, Xinzhi Mu, Bo Pang, and Cewu Lu.
Asynchronous interaction aggregation for action detection.
In European Conference on Computer Vision, pages 71–87.
Springer, 2020. 1, 3, 4

[18] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and
Kaiming He. Aggregated residual transformations for deep
neural networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1492–1500,
2017. 3

[19] Ce Zheng, Sijie Zhu, Matias Mendieta, Taojiannan Yang,
Chen Chen, and Zhengming Ding. 3d human pose estima-
tion with spatial and temporal transformers. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion, pages 11656–11665, 2021. 2

5


	. Method
	. Overall Framework
	. Entity Selection
	. The RGB Branch
	. The Pose Branch
	. The Attentive Fusion Module (AFM)
	. Temporal Interaction Unit
	. Implementation Details
	. Ablation Study

	. Main Results
	. Final Submission

	. Acknowledgments

