
DeeperAction Workshop at ECCV 2022:
2nd place solution for Part-level Action Parsing on Kinetics-TPS Track

Technical Report: Unifying Comprehensive Knowledge into Part-level Action Parsing

Xiaojia Chen1 Xuanhan Wang1 Yan Dai1 Jingkuan Song12

1 Center for Future Media, University of Electronic Science and Technology of China, Chengdu, China
2Pengcheng Lab, Shenzhen, China

josonchan1998@163.com, xuanhan.wang@std.uestc.edu.com, yandai1019@gmail.com

jingkuan.song@gmail.com

Abstract

This technical report introduces our solution for Part-
level Action Parsing on Kinetics-TPS Track in ECCV Deep-
erAction Workshop 2022. The proposed method is mainly
based on Knowledge Embedded RCNN (KE-RCNN) [11]
for part-level action parsing and CSN [5] for video ac-
tion recognition. Specifically, KE-RCNN is an end-to-end
framework and unifies comprehensive knowledge into part-
level action parsing, which has three prediction heads for
human detection, body part detection, and part state pars-
ing. In the competition, our method achieved a score of 69%
on the test set of Kinetics-TPS.

1. Introduction
The Part-level Action Parsing task aims at localizing the

human instance and detecting their body part location and
part states simultaneously in the frame level. In this report,
we use KE-RCNN [11] for part-level action parsing and
CSN [5] for video action recognition, which forms the ba-
sis for the submission to the Kinetics-TPS Challenge from
CFM-HAG team.

As demonstrated in [10], the instance-aware body part
detection and part state parsing is the bottleneck for this
task. Inspired by [6], an intuitive approach is to directly
adopt an RCNN-based framework to support part-level ac-
tion parsing, which is derived from object detection models
by applying two new branches for body part detection and
part state parsing on part-level region features. However,
local-wise part boxes with limited visual clues (i.e., part ap-
pearance only) will lead to unsatisfied parsing results, since
many part-level states are not only decided by part-self but
also relevant to others. To handle the above issue, we ar-
gue that not only visual information derived from local-wise

part boxes but also relational knowledge representing rich
clues of a part are needed.

Motivated by the above analysis, we propose a Knowl-
edge Embedded regional convolution neural network (KE-
RCNN), which is a simple yet effective RCNN-based
framework for part-level action parsing. It follows an
encoder-decoder design pattern that involves two novel
components: (1) Implicit Knowledge-based Encoder (IK-
En) and (2) Explicit Knowledge-based Decoder (EK-De).
Specifically, the IK-En is designed to enhance part-level
representation by encoding implicit knowledge about part-
part relational contexts into part boxes, where it smartly de-
cides which part-part relations are needed and what contexts
to add. After that, the EK-De is proposed to identify the
state from the part-level representation with the guidance of
prior knowledge about part-state relations, which is derived
from statistical priors.

Next, we present the detailed algorithm in the following
section.

2. Method

The overall pipeline of the proposed method is shown
in Fig. 1. Next, we orderly present the proposed method
for human and body part detection, part state parsing, and
video action recognition.

2.1. Human and Parts Detection

To detect persons and their body parts from video
frames, we adopt an object detection approach based on
Faster-RCNN [9], which starts with region proposal gener-
ation and then refines each proposal in the RCNN head for
predicting persons’ locations with their categories. Further-
more, we extend the Faster-RCNN by adding one RCNN
branch for instance-level body part detection.
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Figure 1. The overview of the proposed pipeline for part-level action parsing.

To implement our proposed detector, we take the Faster-
RCNN with ResNet-50 as the basic detection model. In
parallel with the person detection branch, a sub-network is
built for body part detection, named Part-RCNN. Specifi-
cally, Part-RCNN is constructed by four consecutive con-
volutional layers with 256 channels followed by two linear
layers for body part classification and regression. As a re-
sult, the proposed detector outputs a set of predictions, in-
cluding the person bounding box {Pcls ∈ R2,Pbox ∈ R8}
and the instance-aware body part bounding box {Ppcls ∈
RN ,Ppbox ∈ R4×N}, where N indicates the number of
part categories.
Learning objectives: To enable the model to perform per-
son detection and body part detection, we design our learn-
ing objectives as follows:

ℓcls = Cross Entropy(Pcls,P∗
cls)

ℓbox = SmoothL1(Pbox,P∗
box)

ℓpcls = BCE(Ppcls,P∗
pcls)

ℓpbox = SmoothL1(Ppbox,P∗
pbox)

ℓdet = ℓcls + ℓbox + ℓpcls + ℓpbox

(1)

where P∗
cls,P∗

box,P∗
pcls, and P∗

pbox is the corresponding
ground truth. And BCE indicates the binary cross entropy
loss.

2.2. Part State Parsing

In this section, we introduce our proposed method for
part-level state parsing. As shown in Fig 1, our method de-
couples part state parsing by adding an independent branch,
named KE-RCNN. To parse the state for each detected body

part, our KE-RCNN first utilizes an Implicit Knowledge-
based Encoder (IK-En) to enhance the part feature by in-
corporating part-part relational contexts. Then, under the
guidance of explicit knowledge about part-state relations,
candidate state queries that are relevant to the part are pro-
vided. Next, conditioning on candidate attribute queries, the
enhanced part feature is further projected to state embed-
dings by applying an Explicit Knowledge-based Decoder
(EK-De). Finally, a calculated similarity between generated
part state embeddings and state classifier is used to recog-
nize the state of the part.

2.2.1 Implicit Knowledge Encoder

In the following, we discuss the two major components
(i.e., visual and geometry context encoding) of our Implicit
Knowledge based Encoder (IK-En).
Visual context encoding: Given the detected person
bounding boxes and their parts’ bounding boxes, we firstly
extracted their features by RoIAlign [6], which are denoted
as fv and fu, respectively. Following [4], we start by evenly
splitting part features fu into two subsets, respectively de-
noted as fu1 and fu2. fu1 is used to represent part visual
information and fu2 is used to encode visual contexts by
interacting with fv . Specifically, we treat fu2 as the query,
and let fv be the key and value, then perform cross attention
to obtain the part context feature hz . Finally, we linearly
fuse the part visual feature fu1 and the part context feature
hz to attain the enhanced part representation ĥz .
Geometry context encoding: In addition to visual con-
textual relations, we represent geometry context of the part
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through Eq. 2:

hs = Wg(
xu−xv

wu
, yu−yv

hu
, log(wv

wu
), log( hv

hu
))T , (2)

where ⟨xu, yu, wu, hu⟩ are coordinates and scales extracted
from part region and ⟨xv, yv, wv, hv⟩ are counterpart from
person region. Wg ∈ RD×4 is a linear matrix that maps the
relative geometry context into a high dimensional vector hs.

After that, a part representation fh with implicit knowl-
edge (i.e., visual relation and geometry relation) is obtained
by simply fusing hs and ĥz .

2.2.2 Explicit Knowledge Decoder

In this section, we introduce how to parse the state of the
part by our Explicit Knowledge Embedded Decoder (EK-
De). We start by initializing the state queries qu ∈ RD×C

and use explicit knowledge to filter state queries, where C
is the number of state categories and D is the number of
channels. The filter process can denote as Eq. 3:

c∗u = cu
T g,

q′u = qu ◦ c∗u,
q̂u = θ(q′u|c∗u),

(3)

where cu ∈ RN×1 indicates the probability of each part
class, c∗u ∈ R1×C denotes a weighing vector that decides
which state is the candidate. And g ∈ RN×C is the explicit
knowledge by calculating a frequent statistics matrix from
the occurrence among all part-state pairs. θ(·|·) denotes
a filtering function that outputs Ĉ candidate state queries.
q̂u ∈ RĈ×D conditioning on c∗u, where each state query
is selected as a candidate if its’ corresponding score in c∗u
is higher than a predefined threshold value (e.g., 0). After
that, we perform the multi-head cross attention between fil-
tered state queries q̂u and part representation fh to obtain
the decoded state embeddings f ∈ RĈ×D, where fh is the
key and value in cross attention. Finally, the state of the part
is parsed through a similarity matrix calculated between f

and the state classifier Ŵs ∈ RĈ×D, as formalized in Eq 4.

O = P(
D∑
i=1

Ŵ i
s ◦ f i), (4)

where P(·) is the softmax nonlinear function. O ∈ RĈ is
the state categorical distribution.

2.3. Video-level Action Recognition

Following [3], we use the CSN [5] model pre-trained
on IG-65M dataset and then finetune on the Kinetics-TPS
training set. As a result, we achieve around 97% top-1 accu-
racy on the testing set. Furthermore, we finetune the Video
Swin Transformer [8] model pre-trained on the something-
something dataset and then perform a model ensemble be-
tween the CSN model and the Video Swin Transformer

model. Finally, we achieve 98% top-1 accuracy on the test-
ing set.

3. Experiments

3.1. Experimental Settings

We train our models on the training set of the Kinetics-
TPS dataset. There are 3809 annotated videos in the train-
ing set. In the test phase, all models are tested on the
official server1. Our models are implemented based on
mmdetection[2] on an Ubuntu server with eight Tesla V100
graphic cards. We adopt FPN as the backbone model and
use Adam solver to train for 12 epochs. The learning rate is
1e-4 and decreases by 10 at the 8-th epoch.

3.2. Main Result

Our experimental results are summarized in Tab 1. We
firstly simply extend Faster-RCNN by adding two branches
for body part detection and part state parsing. And we
finetune TimeSformer [1] model as our video classifica-
tion result, which achieves 85% top-1 accuracy on the test-
ing set. When replacing the baseline with the KE-RCNN
model, we find comprehensive knowledge is critical to part-
level action parsing, where it improves the baseline model
by 4.7%. After that, we replace the ResNet-50 backbone
with the Swin-B [7] backbone, which improves the score by
4.5%. Furthermore, we use the ensembled video classifica-
tion model as described in subsection 2.3, which achieves
a higher score of 66.6%. Finally, with the help of testing
time augmentation (TTA) and parsing model ensemble, we
attain the final score of 69.1%.

3.3. Ablation Study

In this section, we investigate the effect of IK-En and
EK-De. Note that we randomly pick 30% of the training set
as the minival set for the ablation study, resulting in 2686
videos for training and 1123 videos for validation. And
we use the same video classification result across all the
models. The experimental results are reported in Tab. 2.
From the results, we have the following findings:1) The KE-
RCNN with IK-En shows better performance than that of
KE-RCNN with EK-De. 2) Jointly applying IK-En and EK-
De brings the best results, suggesting that each component
is complementary to each other for state parsing. We refer
readers to the paper of KE-RCNN [11] for more details.

4. Conclusion
In this report, we present our method for part-level action

parsing. We unify comprehensive knowledge into part-level

1https://codalab.lisn.upsaclay.fr/competitions/
4392
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Table 1. Ablation results of different submissions on the Kinetics-TPS testing set.
Baseline KE-RCNN Better backbone Video model ensemble TTA Parsing model ensemble Accp

✓ 49.5%
✓ ✓ 54.2%
✓ ✓ ✓ 58.7%
✓ ✓ ✓ ✓ 66.6%
✓ ✓ ✓ ✓ ✓ 67.2%
✓ ✓ ✓ ✓ ✓ ✓ 69.1%

Table 2. Component ablation studies on Kinetics-TPS. Investigat-
ing the effect of proposed modules.

Parsing Branch IK-En EK-De Accp
Standard RCNN - - 49.1

KE-RCNN ✓ 52.2
KE-RCNN ✓ 51.7
KE-RCNN ✓ ✓ 53.5

action parsing by implicit and explicit knowledge. By build-
ing Implicit Knowledge based Encoder (IK-En), we en-
hance part representations by incorporating visual contexts
as well as geometry contexts. Then Explicit Knowledge-
based Decoder (EK-De) is proposed to identify the state of
a part by human prior knowledge. Extensive experiments
on the Kinetics-TPS dataset demonstrate the effectiveness
of the proposed method, and it obtain 69.1% Accp score in
the 2022 Kinetics-TPS Challenge.
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